How Do Reviews Impact Airbnb’s Prices? A Hedonic Approach
Abstract
1. Introduction
2. Literature Review
2.1. Airbnb Price Determinants
2.2. Sentiment Analysis
2.3. Hedonic Price Modeling
3. Methodology and Model Specification
3.1. Methodological Strategy
3.2. Variables
- Host Attributes—This includes variables such as the host’s years of experience, the number of listings managed, gender, the language used in the listing description, the acceptance rate, the response rate, and the average response time to guest inquiries. We also consider whether the host holds Superhost status. To qualify as an Airbnb Superhost, a host must host at least ten stays or 100 nights across at least three reservations, maintain a response rate of 90% or higher, keep cancellations under 1%, and achieve an overall rating of 4.8 or above.
- Listing Characteristics—This encompasses the maximum number of guests the listing accommodates, whether the property is an entire place, the number of bedrooms and bathrooms, and amenities such as air conditioning and swimming pool access.
- Location and Nearby Amenities—This group includes variables indicating whether the listing is situated within the municipality of Porto (which hosts the majority of listings) and whether the listing provides precise geolocation data on the Airbnb platform. Additionally, we calculate distances from each listing to the nearest metro station, cultural point of interest, and coastline point.
- Booking-Related Variables—This category covers factors such as the minimum number of nights required, the type of cancellation policy, instant booking availability, the base number of guests included in the price, acceptance of additional guests, and the presence of security deposits or cleaning fees.
- Crowdsourcing Metrics—This set comprises variables such as the average number of customer reviews per month, the overall quantitative rating given by guests, and the sentiment score extracted from textual reviews.
4. Empirical Results
4.1. Results
4.2. Discussion of the Results
5. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abrate, G., & Viglia, G. (2022). Personal or product reputation? Optimising revenues in the sharing economy. Journal of Travel Research, 58(1), 136–148. [Google Scholar] [CrossRef]
- AICEP. (2025). About us. Available online: https://www.portugalglobal.pt/en/about-aicep/ (accessed on 25 May 2025).
- Airbnb. (2022). About superhosts. Available online: https://www.airbnb.pt/help/article/828/sobre-os-superhosts (accessed on 3 March 2022).
- Alsudais, A., & Teubner, T. (2019, August 15–17). Large-scale sentiment analysis on Airbnb reviews from 15 cities. 25th Americas Conference on Information Systems, Cancún, Mexico. [Google Scholar]
- Anselin, L. (1988). Spatial econometrics: Methods and models (Vol. 4). Springer Science & Business Media. [Google Scholar]
- Awotunde, J., Misra, S., Katta, V., & Adebayo, O. (2023). An ensemble-based hotel reviews system using naive bayes Classifier. CMES—Computer Modeling in Engineering and Sciences, 137(1), 131–154. [Google Scholar] [CrossRef]
- Bao, Y., Ma, E., La, L., Xu, F., & Huang, L. (2022). Examining the Airbnb accommodation experience in Hangzhou through the lens of the Experience Economy Model. Journal of Vacation Marketing, 28(1), 95–116. [Google Scholar] [CrossRef]
- Blal, I., & Sturman, M. C. (2014). The differential effects of the quality and quantity of online reviews on hotel room sales. Cornell Hospitality Quarterly, 55(4), 365–375. [Google Scholar] [CrossRef]
- Boto-García, D. (2022). Heterogeneous price adjustments among Airbnb hosts amid COVID-19: Evidence from Barcelona. International Journal of Hospitality Management, 102, 103169. [Google Scholar] [CrossRef] [PubMed]
- Bull, A. O. (1994). Pricing a motel’s location. International Journal of Contemporary Hospitality Management, 6(6), 10–15. [Google Scholar] [CrossRef]
- Cai, Y., Zhou, Y., & Scott, N. (2019). Price determinants of Airbnb listings: Evidence from Hong Kong. Tourism Analysis, 24(2), 227–242. [Google Scholar] [CrossRef]
- Carvell, S. A., & Herrin, W. E. (1990). Pricing in the hospitality industry: An implicit markets approach. Hospitality Review, 8(2), 3. [Google Scholar]
- Cavique, M., Ribeiro, R., Batista, F., & Correia, A. (2022). Examining Airbnb guest satisfaction tendencies: A text mining approach. Current Issues in Tourism, 25, 3607–3622. [Google Scholar] [CrossRef]
- Chen, C. F., & Rothschild, R. (2010). An application of hedonic pricing analysis to the case of hotel rooms in Taipei. Tourism Economics, 16(3), 685–694. [Google Scholar] [CrossRef]
- Chen, Y., & Xie, K. (2017). Consumer valuation of Airbnb listings: A hedonic pricing approach. International Journal of Contemporary Hospitality Management, 29(9), 2405–2424. [Google Scholar] [CrossRef]
- Cheng, M., & Jin, X. (2018). What do Airbnb users care about? An analysis of online review comments. International Journal of Hospitality Management, 76, 58–70. [Google Scholar] [CrossRef]
- Cheng, X., Fu, S., Sun, J., Bilgihan, A., & Okumus, F. (2019). An investigation on online reviews in sharing economy driven hospitality platforms: A viewpoint of trust. Tourism Management, 71, 366–377. [Google Scholar] [CrossRef]
- Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354. [Google Scholar] [CrossRef]
- Chica-Olmo, J., González-Morales, J. G., & Zafra-Gómez, J. L. (2020). Effects of location on Airbnb apartment pricing in Málaga. Tourism Management, 77, 103981. [Google Scholar] [CrossRef]
- Deboosere, R., Kerrigan, D. J., Wachsmuth, D., & El-Geneidy, A. (2019). Location, location and professionalization: A multilevel hedonic analysis of Airbnb listing prices and revenue. Regional Studies, Regional Science, 6(1), 143–156. [Google Scholar] [CrossRef]
- Di Persio, L., & Lalmi, E. (2024). Maximizing profitability and occupancy: An optimal pricing strategy for airbnb hosts using regression techniques and natural language processing. Journal of Risk and Financial Management, 17(9), 414. [Google Scholar] [CrossRef]
- Dogru, T., Hanks, L., Mody, M., Suess, C., & Sirakaya-Turk, E. (2020). The effects of Airbnb on hotel performance: Evidence from cities beyond the United States. Tourism Management, 79, 104090. [Google Scholar] [CrossRef]
- Dudás, G., Kovalcsik, T., Vida, G., Boros, L., & Nagy, G. (2020). Price determinants of Airbnb listing prices in lake balaton touristic region, Hungary. European Journal of Tourism Research, 24(10), 1–18. [Google Scholar] [CrossRef]
- Ert, E., & Fleischer, A. (2019). The evolution of trust in Airbnb: A case of home rental. Annals of Tourism Research, 75, 279–287. [Google Scholar] [CrossRef]
- Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing economy: The role of personal photos in Airbnb. Tourism Management, 55, 62–73. [Google Scholar] [CrossRef]
- Falk, M., Larpin, B., & Scaglione, M. (2019). The role of specific attributes in determining prices of Airbnb listings in rural and urban locations. International Journal of Hospitality Management, 83, 132–140. [Google Scholar] [CrossRef]
- Fearne, R. (2022). An analysis of the distribution and price determinants of Airbnb rentals in Malta. International Journal of Housing Markets and Analysis, 15(1), 231–246. [Google Scholar] [CrossRef]
- Forgacs, G., & Dimanche, F. (2016). Revenue challenges for hotels in the sharing economy: Facing the Airbnb menace. Journal of Revenue and Pricing Management, 15(6), 509–515. [Google Scholar] [CrossRef]
- Ghosh, I., Jana, R. K., & Abedin, M. Z. (2023). An ensemble machine learning framework for Airbnb rental price modeling without using amenity-driven features. International Journal of Contemporary Hospitality Management, 35(10), 3592–3611. [Google Scholar] [CrossRef]
- Gibbs, C., Guttentag, D., Gretzel, U., Morton, J., & Goodwill, A. (2018). Pricing in the sharing economy: A hedonic pricing model applied to Airbnb listings. Journal of Travel & Tourism Marketing, 35(1), 46–56. [Google Scholar] [CrossRef]
- Gunter, U., & Önder, I. (2017). Determinants of Airbnb demand in Vienna and their implications for the traditional accommodation industry. Tourism Economics, 24(3), 270–293. [Google Scholar] [CrossRef]
- Guttentag, D. (2016). Why tourists choose Airbnb: A motivation-based segmentation study underpinned by innovation concepts [Ph.D. dissertation, University of Waterloo]. [Google Scholar]
- Guttentag, D., Smith, S., Potwarka, L., & Havitz, M. (2018). Why tourists choose Airbnb: A motivation-based segmentation study. Journal of Travel Research, 57(3), 342–359. [Google Scholar] [CrossRef]
- Gyódi, K., & Nawaro, Ł. (2021). Determinants of Airbnb prices in European cities: A spatial econometrics approach. Tourism Management, 86, 104319. [Google Scholar] [CrossRef]
- Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P. (2014). Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria. Urban Studies, 51(2), 390–411. [Google Scholar] [CrossRef]
- Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201–214. [Google Scholar] [CrossRef]
- Huang, D., & Huang, S. (2024). Airbnb exits China: Insights from platform competition. Tourism Review, 79(7), 1318–1329. [Google Scholar] [CrossRef]
- Hung, W. T., Shang, J. K., & Wang, F. C. (2010). Pricing determinants in the hotel industry: Quantile regression analysis. International Journal of Hospitality Management, 29(3), 378–384. [Google Scholar] [CrossRef]
- Inside Airbnb. (2020). Available online: http://insideairbnb.com/ (accessed on 30 April 2020).
- Jalilvand, M. R., Salimipour, S., Elyasi, M., & Mohammadi, M. (2017). Factors influencing word of mouth behaviour in the restaurant industry. Marketing Intelligence & Planning, 35(1), 81–110. [Google Scholar] [CrossRef]
- Jiang, X., Ye, D., Li, K., Feng, R., Wu, Y., & Yang, T. (2024). Built environment and Airbnb spatial distribution in Hong Kong: A case study considering the spatial heterogeneity and multiscale effects. Applied Geography, 166, 103262. [Google Scholar] [CrossRef]
- Jiao, J., & Bai, S. (2020). Cities reshaped by Airbnb: A case study in new York City, Chicago, and Los Angeles. Environment and Planning A: Economy and Space, 52(1), 10–13. [Google Scholar] [CrossRef]
- Johnson, A. G., & Neuhofer, B. (2017). Airbnb–an exploration of value co-creation experiences in Jamaica. International Journal of Contemporary Hospitality Management, 29(9), 2361–2376. [Google Scholar] [CrossRef]
- Ju, Y., Back, K. J., Choi, Y., & Lee, J. S. (2019). Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. International Journal of Hospitality Management, 77, 342–352. [Google Scholar] [CrossRef]
- Kennedy, P. (1985). A guide to econometrics (2nd ed.). John Wiley & Sons. [Google Scholar]
- Kiatkawsin, K., Sutherland, I., & Kim, J. Y. (2020). A comparative automated text analysis of Airbnb reviews in Hong Kong and Singapore using latent dirichlet allocation. Sustainability, 12(16), 6673. [Google Scholar] [CrossRef]
- Kim, J., Lee, J. J., & Na, H. J. H. (2025). Resilience through an online platform: Evidence from Airbnb and hotels. Information & Management, 62(5), 104157. [Google Scholar] [CrossRef]
- Kim, M., Darban, M., & SangGon, L. (2025). The impact of Airbnb’s competitive pricing on traveler spending at destinations. International Journal of Hospitality Management, 124, 103994. [Google Scholar] [CrossRef]
- Kim, M., Kim, S., & Lee, J. (2018). Spatial heterogeneity of country-of-origin effects within a country: Analysis of online review ratings in the US car market. Marketing Letters, 29, 189–205. [Google Scholar] [CrossRef]
- Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132–157. [Google Scholar] [CrossRef]
- Lawani, A., Reed, M. R., Mark, T., & Zheng, Y. (2019). Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston. Regional Science and Urban Economics, 75, 22–34. [Google Scholar] [CrossRef]
- Lee, C. K. H., Tse, Y. K., Zhang, M., & Wang, Y. (2023). What have hosts overlooked for improving stay experience in accommodation-sharing? Empirical evidence from Airbnb customer reviews. International Journal of Contemporary Hospitality Management, 35(2), 765–784. [Google Scholar] [CrossRef]
- Lee, S., & Kim, H. (2023). Four shades of Airbnb and its impact on locals: A spatiotemporal analysis of Airbnb, rent, housing prices, and gentrification. Tourism Management Perspectives, 49, 101192. [Google Scholar] [CrossRef]
- Lee, S. K., & Jang, S. C. (2011). Room rates of U.S. airport hotels: Examining the dual effects of proximities. Journal of Travel Research, 50(2), 186–197. [Google Scholar] [CrossRef]
- Leoni, V., & Nilsson, W. (2021). Dynamic pricing and revenues of Airbnb listings: Estimating heterogeneous causal effects. International Journal of Hospitality Management, 95, 102914. [Google Scholar] [CrossRef]
- Li, X., & Hitt, L. M. (2010). Price effects in online product reviews: An analytical model and empirical analysis. MIS Quarterly, 34, 809–831. [Google Scholar] [CrossRef]
- Liang, S., Schuckert, M., Law, R., & Chen, C. C. (2017). Be a “Superhost”: The importance of badge systems for peer-to-peer rental accommodations. Tourism Management, 60, 454–465. [Google Scholar] [CrossRef]
- Lin, W., & Yang, F. (2023). The price of short-term housing: A study of Airbnb on 26 regions in the United States. Journal of Housing Economics, 65, 102005. [Google Scholar] [CrossRef]
- Lladós-Masllorens, J., Meseguer-Artola, A., & Rodríguez-Ardura, I. (2020). Understanding peer-to-peer, two-sided digital marketplaces: Pricing lessons from Airbnb in Barcelona. Sustainability, 12(13), 5229. [Google Scholar] [CrossRef]
- Lorde, T., Jacob, J., & Weekes, Q. (2018). Price-setting behavior in a tourism sharing economy accommodation market: A hedonic price analysis of AirBnB hosts in the caribbean. Tourism Management Perspectives, 30, 251–261. [Google Scholar] [CrossRef]
- Luo, Y., & Tang, R. L. (2019). Understanding hidden dimensions in textual reviews on Airbnb: An application of modified latent aspect rating analysis (LARA). International Journal of Hospitality Management, 80, 144–154. [Google Scholar] [CrossRef]
- Magno, F., Cassia, F., & Bruni, A. (2018). “Please write a (great) online review for my hotel!” Guests’ reactions to solicited reviews. Journal of Vacation Marketing, 24(2), 148–158. [Google Scholar] [CrossRef]
- Manes, E., & Tchetchik, A. (2018). The role of electronic word of mouth in reducing information asymmetry: An empirical investigation of online hotel booking. Journal of Business Research, 85, 185–196. [Google Scholar] [CrossRef]
- Mao, Z., & Lyu, J. (2017). Why travelers use Airbnb again? An integrative approach to understanding travelers’ repurchase intention. International Journal of Contemporary Hospitality Management, 29(9), 2464–2482. [Google Scholar] [CrossRef]
- Marchenko, A. (2019). The impact of host race and gender on prices on Airbnb. Journal of Housing Economics, 46, 101635. [Google Scholar] [CrossRef]
- Martinez, R. D., Carrington, A., Kuo, T., Tarhuni, L., & Abdel-Motaal, N. A. Z. (2017). The impact of an AirBnb host’s listing description ’sentiment’ and length on occupancy rates. arXiv, arXiv:1711.09196. [Google Scholar]
- Masiero, L., Heo, C. Y., & Pan, B. (2015). Determining guests’ willingness to pay for hotel room attributes with a discrete choice model. International Journal of Hospitality Management, 49, 117–124. [Google Scholar] [CrossRef]
- Matzat, U., & Snijders, C. (2012). Rebuilding trust in online shops on consumer review sites: Sellers’ responses to user-generated complaints. Journal of Computer-Mediated Communication, 18(1), 62–79. [Google Scholar] [CrossRef][Green Version]
- Mauri, A., Minazzi, R., Nieto-García, M., & Viglia, G. (2018). Humanize your business. The role of personal reputation in the sharing economy. International Journal of Hospitality Management, 73, 36–43. [Google Scholar] [CrossRef]
- Más-Ferrando, A., Moreno-Izquierdom, L. F., Perles-Ribes, J. F., & Rubia, A. (2024). Has COVID-19 changed the factors explaining the occupancy of Airbnb accommodation? Madrid as a case study. Journal of Destination Marketing & Management, 31, 100837. [Google Scholar] [CrossRef]
- Milone, F. L., Gunter, U., & Zekan, B. (2023). The pricing of European airbnb listings during the pandemic: A difference-in-differences approach employing COVID-19 response strategies as a continuous treatment. Tourism Management, 97, 104738. [Google Scholar] [CrossRef]
- Milunovich, G., & Nasrabadi, D. (2025). Airbnb pricing in Sydney: Predictive modelling and explainable machine learning. Applied Economics. in press. [Google Scholar] [CrossRef]
- Moro, S., Rita, P., Esmerado, J., & Oliveira, C. (2019). Unfolding the drivers for sentiments generated by Airbnb Experiences. International Journal of Culture, Tourism and Hospitality Research, 13(4), 430–442. [Google Scholar] [CrossRef]
- Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv, arXiv:1103.2903. [Google Scholar] [CrossRef]
- Nieto García, M., Muñoz-Gallego, P. A., Viglia, G., & González-Benito, Ó. (2020). Be social! The impact of self-presentation on peer-to-peer accommodation revenue. Journal of Travel Research, 59(7), 1268–1281. [Google Scholar] [CrossRef]
- Nowak, A., & Smith, P. (2017). Textual Analysis in Real Estate. Journal of Applied Econometrics, 32(4), 896–918. [Google Scholar] [CrossRef]
- Öğüt, H., & Onur Taş, B. K. (2012). The influence of internet customer reviews on online sales and prices in the hotel industry. The Service Industries Journal, 32(2), 197–214. [Google Scholar] [CrossRef]
- Östh, J., Türk, U., Kourtit, K., & Nijkamp, P. (2025). Hedonic price models, social media data and AI–An application to the AIRBNB sector in us cities. Computers, Environment and Urban Systems, 120, 102303. [Google Scholar] [CrossRef]
- Park, S., & Nicolau, J. L. (2015). Asymmetric effects of online consumer reviews. Annals of Tourism Research, 50, 67–83. [Google Scholar] [CrossRef]
- Patel, A. A., & Arasanipalai, A. U. (2021). Applied natural language processing in the enterprise. O’Reilly Media, Inc. [Google Scholar]
- Perez-Sanchez, V. R., Serrano-Estrada, L., Martí, P., & Mora-García, R. T. (2018). The what, where, and why of Airbnb price determinants. Sustainability, 10(12), 4596. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J. V., Rachinger, H., & Suárez-Vega, R. (2024). Do the daily listing prices of competitors affect long-run demand in the P2P accommodation market? Journal of Policy Research in Tourism, Leisure and Events, 1–21. [Google Scholar] [CrossRef]
- Possamai, M. E. (2022, August 1). Gen Z: How will the newest generation of travelers impact the tourism industry? Trekk Soft. Available online: https://www.trekksoft.com/en/blog/gen-z-how-will-the-newest-generation-of-travelers-impact-the-tourism-industry (accessed on 17 December 2022).
- Priporas, C. V., Stylos, N., Vedanthachari, L. N., & Santiwatana, P. (2017). Service quality, satisfaction, and customer loyalty in Airbnb accommodation in Thailand. International Journal of Tourism Research, 19(6), 693–704. [Google Scholar] [CrossRef]
- Puh, K., & Babac, M. (2023). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. [Google Scholar] [CrossRef]
- Sainaghi, R., Abrate, G., & Mauri, A. (2021). Price and RevPAR determinants of Airbnb listings: Convergent and divergent evidence. International Journal of Hospitality Management, 92, 102709. [Google Scholar] [CrossRef]
- Sainaghi, R., & Chica-Olmo, J. (2022). The effects of location before and during COVID-19: Impacts on revenue of Airbnb listings in Milan (Italy). Annals of Tourism Research, 96, 103464. [Google Scholar] [CrossRef] [PubMed]
- Santos, G. (2016). Worldwide hedonic prices of subjective hostel characteristics. Tourism Management, 52, 451–454. [Google Scholar] [CrossRef]
- Schamel, G. (2012). Weekend vs. midweek stays: Modelling hotel room rates in a small market. International Journal of Hospitality Management, 31, 1113–1118. [Google Scholar] [CrossRef]
- Shokoohyar, S., Sobhani, A., & Sobhani, A. (2020). Determinants of rental strategy: Short-term vs long-term rental strategy. International Journal of Contemporary Hospitality Management, 32(12), 3873–3894. [Google Scholar] [CrossRef]
- Silge, J., & Robinson, D. (2017). Text mining with R: A tidy approach. O’Reilly Media, Inc. [Google Scholar]
- Sirmans, G., Macpherson, D., & Zietz, E. (2005). The composition of hedonic pricing models. Journal of Real Estate Literature, 13(1), 3–43. [Google Scholar] [CrossRef]
- So, K. K. F., Oh, H., & Min, S. (2018). Motivations and constraints of Airbnb consumers: Findings from a mixed-methods approach. Tourism Management, 67, 224–236. [Google Scholar] [CrossRef]
- Soler, I., & Gemar, G. (2018). Hedonic price models with geographically weighted regression: An application to hospitality. Journal of Destination Marketing & Management, 9, 126–137. [Google Scholar] [CrossRef]
- Stata. (2022). Available online: http://www.stata.com/manuals/manuals/r.pdf (accessed on 17 December 2022).
- Sthapit, E., & Jiménez-Barreto, J. (2018). Exploring tourists’ memorable hospitality experiences: An Airbnb perspective. Tourism Management Perspectives, 28, 83–92. [Google Scholar] [CrossRef]
- Suess, C., Woosnam, K. M., & Erul, E. (2020). Stranger-danger? Understanding the moderating effects of children in the household on non-hosting residents’ emotional solidarity with Airbnb visitors, feeling safe, and support for Airbnb. Tourism Management, 77, 103952. [Google Scholar] [CrossRef]
- Tafesse, W., & Tariq, U. (2025). Airbnb amenities: Quantifying their contribution to the guest experience. Annals of Tourism Research Empirical Insights, 6(1), 100167. [Google Scholar] [CrossRef]
- Tang, J., Cheng, J., & Zhang, M. (2024). Forecasting Airbnb prices through machine learning. Managerial and Decision Economics, 45(1), 148–160. [Google Scholar] [CrossRef]
- Teubner, T., Hawlitschek, F., & Dann, D. (2017). Price determinants on Airbnb: How reputation pays off in the sharing economy. Journal of Self-Governance and Management Economics, 5(4), 53–80. [Google Scholar] [CrossRef]
- Thomsen, C., & Jeong, M. (2021). An analysis of Airbnb online reviews: User experience in 16 US cities. Journal of Hospitality and Tourism Technology, 12(1), 97–111. [Google Scholar] [CrossRef]
- Thrane, C. (2007). Examining the determinants of room rates for hotels in capital cities: The Oslo experience. Journal of Revenue and Pricing Management, 5(4), 315–323. [Google Scholar] [CrossRef]
- Tussyadiah, I. P. (2016). Factors of satisfaction and intention to use peer-to-peer accommodation. International Journal of Hospitality Management, 55, 70–80. [Google Scholar] [CrossRef]
- Tussyadiah, I. P., & Pesonen, J. (2016). Impacts of peer-to-peer accommodation use on travel patterns. Journal of Travel Research, 55(8), 1022–1040. [Google Scholar] [CrossRef]
- Tussyadiah, I. P., & Zach, F. (2017). Identifying salient attributes of peer-to-peer accommodation experience. Journal of Travel & Tourism Marketing, 34(5), 636–652. [Google Scholar] [CrossRef]
- Voltes-Dorta, A., & Sánchez-Medina, A. (2020). Drivers of Airbnb prices according to property/room type, season and location: A regression approach. Journal of Hospitality and Tourism Management, 45, 266–275. [Google Scholar] [CrossRef]
- von Hoffen, M., Hagge, M., Betzing, J. H., & Chasin, F. (2018). Leveraging social media to gain insights into service delivery: A study on Airbnb. Information Systems and e-Business Management, 16(2), 247–269. [Google Scholar] [CrossRef]
- Wang, D., & Nicolau, J. L. (2017). Price determinants of sharing economy-based accommodation rental: A study of listings from 33 cities on Airbnb.com. International Journal of Hospitality Management, 62, 120–131. [Google Scholar] [CrossRef]
- Wang, Y., Assad, Y., & Filieri, R. (2020). What makes hosts trust Airbnb? Antecedents of Hosts’ Trust toward Airbnb and its impact on continuance intention. Journal of Travel Research, 59(4), 686–703. [Google Scholar] [CrossRef]
- Weismayer, C., & Pezenka, I. (2019). Drivers of emotions in Airbnb reviews. In Information and communication technologies in tourism (pp. 67–79). Springer. [Google Scholar]
- Xie, K. L., & Kwok, L. (2017). The effects of Airbnb’s price positioning on hotel performance. International Journal of Hospitality Management, 67, 174–184. [Google Scholar] [CrossRef]
- Yang, S., & Ahn, S. (2016). Impact of motivation in the sharing economy and perceived security in attitude and loyalty toward Airbnb. Advanced Science and Technology Letters, 129, 180–184. [Google Scholar]
- Yang, Y., Kim, S., Kim, J., & Koh, Y. (2022). How Airbnb Titles Influence Guests’ Decision Making: Linguistic and Spatial Analysis Approach. International Journal of Hospitality & Tourism Administration, 25, 1–24. [Google Scholar] [CrossRef]
- Yoong, K., Woltering, R. O., & Heo, C. Y. (2025). Revisiting Airbnb’s disruption of hotels: Uneven impacts across markets, segments, and accommodation types. International Journal of Hospitality Management, 126, 104073. [Google Scholar] [CrossRef]
- Zamani, E. D., Choudrie, J., Katechos, G., & Yin, Y. (2019). Trust in the sharing economy: The AirBnB case. Industrial Management & Data Systems, 119(9), 1947–1968. [Google Scholar]
- Zervas, G., Proserpio, D., & Byers, J. W. (2021). A first look at online reputation on Airbnb, where every stay is above average. Marketing Letters, 32(1), 1–16. [Google Scholar] [CrossRef]
- Zhang, Z., Fu, R., Han, L., & Yang, L. (2017). Key Factors Affecting the Price of Airbnb Listings: A Geographically Weighted Approach. Sustainability, 9, 1635. [Google Scholar] [CrossRef]
- Zhang, Z., Li, J., Jones, R. P., Yu, R., & Guo, C. (2024). How coolness drives Airbnb users’ behavioural intention: Findings from asymmetric and symmetric approaches. Current Issues in Tourism, 1–22. [Google Scholar] [CrossRef]
- Zheng, Q., Ke, D., & Li, X. (2023). Optimal pricing strategies for Airbnb when competing with incumbents on two sides. International Journal of Hospitality Management, 108, 103392. [Google Scholar] [CrossRef]
- Zhou, Q., Chen, Y., Ma, C., Li, F., Xiao, Y., Wang, X., & Fu, X. (2018, May 14–16). Measurement and analysis of the reviews in Airbnb. 2018 IFIP Networking Conference (IFIP Networking) and Workshops (pp. 1–9), Zurich, Switzerland. [Google Scholar]
- Zhu, L., Cheng, M., & Wong, I. (2019). Determinants of Peer-to-peer rental rating scores: The Case of Airbnb. International Journal of Contemporary Hospitality Management. ahead-of-print. [Google Scholar] [CrossRef]
Stage | Number of Reviews |
---|---|
Initial reviews | 450,570 |
Non-English reviews | 199,569 |
Short reviews (under 20 characters) | 15,957 |
Automated messages | 1533 |
Terms not recognized | 21,333 |
Cleansed reviews | 212,178 |
Variable | Description | Obs. | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|---|---|
Dep. Var. | Price | Log of the price | 34,449 | 1.77293 | 0.24974 | 0.82 | 3.31 |
Host | Lang | Listing description language (1—English) | 34,449 | 0.6835 | 0.46512 | 0 | 1 |
Gender | 1—Female; 0—Male | 23,424 | 0.47917 | 0.49958 | 0 | 1 | |
Host years | Number of years on Airbnb | 34,449 | 3.91622 | 2.06571 | 0.227 | 9.86 | |
Resp time | Response time (1—under 1 h) | 30,010 | 0.85678 | 0.3503 | 0 | 1 | |
Resp rate | % of response to users’ queries | 30,010 | 0.96893 | 0.12431 | 0 | 1 | |
Acceptance rate | % of users accepted by the host | 33,244 | 0.94382 | 0.16209 | 0 | 1 | |
Superhost | The host has a Superhost status (yes = 1) | 34,449 | 0.37522 | 0.48419 | 0 | 1 | |
List count | Number of host listings | 34,449 | 13.95277 | 52.19372 | 0 | 550 | |
Booking | Cancelation | Cancellation policy (1—Flexible; 0—Strict) | 34,449 | 0.6408 | 0.47977 | 0 | 1 |
Min nights | Minimum nights | 34,449 | 2.29946 | 5.93665 | 1 | 365 | |
Is location exact | yes = 1 | 34,449 | 0.74429 | 0.43627 | 0 | 1 | |
Security deposit | $ | 34,228 | 52.09963 | 102.7795 | 0 | 900 | |
Cleaning fee | $ | 34,449 | 17.84917 | 18.20115 | 0 | 380 | |
Guests included | Guests included in the listing’s price | 34,449 | 2.06735 | 1.44453 | 1 | 16 | |
Extra people | $ per extra person | 34,449 | 8.58629 | 10.02018 | 0 | 250 | |
Instant bookable | yes = 1 | 34,449 | 0.78983 | 1.2789 | 0 | 1 | |
Quarter | Quarters of the year | 34,449 | 2.5992 | 1.10649 | 1 | 4 | |
Location and amenities in the area | Porto | In Porto municipality? (yes = 1) | 34,449 | 0.74324 | 0.43685 | 0 | 1 |
Neighbor | Neighbor of Porto municipality? (yes = 1) | 34,449 | 0.17487 | 0.37986 | 0 | 1 | |
Dist station | Log of the distance (mt) to the nearest tube station | 34,449 | 2.76539 | 0.54076 | 0.3597 | 4.718 | |
Dist poi | Log of the distance (mt) to the nearest point of interest | 34,449 | 2.70313 | 0.46624 | 0.2944 | 4.027 | |
Dist coastline | Log of the distance (mt) to the coastline | 34,449 | 3.17842 | 0.39291 | −1.110 | 4.620 | |
Listing characteristics | Accommodates | Guests the listing accommodates | 34,449 | 4.05446 | 2.18513 | 1 | 17 |
Room type | Entire place (yes = 1) | 34,449 | 0.81761 | 0.38617 | 0 | 1 | |
Nbedrooms | Number of bedrooms | 34,449 | 1.48771 | 1.06401 | 0 | 10 | |
Nbathrooms | Number of bathrooms | 34,449 | 1.36505 | 0.73537 | 0 | 10 | |
Airconditioning | Air conditioning (yes = 1) | 34,449 | 0.32924 | 0.46994 | 0 | 1 | |
Pool | Pool (yes = 1) | 34,449 | 0.04563 | 0.20869 | 0 | 1 | |
Crowdsourcing | Reviews | Average number of reviews per month | 34,449 | 1.8325 | 1.76143 | 0.01 | 14.11 |
Star-rating | Average overall star rating | 34,449 | 93.67514 | 6.7817 | 20 | 100 | |
Sentiment | Sentiment score (1—low; 2—medium; 3—high) | 27,262 | 2.00631 | 0.81593 | 1 | 3 |
Test | Chi2 |
---|---|
LM (ARCH) | 20.251 |
Breusch–Godfrey LM | 45.350 |
Moran | 17.21 |
Variable | Model 1 | Model 2 |
---|---|---|
w_ price | 0.01062 ** | 0.01239 ** |
(0.00492) | (0.00514) | |
lang | 0.01856 *** | 0.02007 *** |
(0.00285) | (0.003) | |
gender | 0.00588 ** | 0.00728 *** |
(0.0025) | (0.0026) | |
host_years | −0.00711 *** | 0.00682 *** |
(0.00065) | (0.00067) | |
resp_time | −0.00301 | −0.01167 ** |
(0.00408) | (0.00454) | |
resp_rate | −0.05211 *** | −0.06562 *** |
(0.01188) | (0.01458) | |
acceptance_rate | −0.03533 *** | −0.04832 *** |
(0.01071) | (0.01669) | |
sh | 0.00589 ** | 0.02578 *** |
(0.00291) | (0.00279) | |
list_count | 0.00061 *** | 0.00033 ** |
(0.00014) | (0.00014) | |
cancelation | 0.01914 *** | 0.01572 *** |
(0.00264) | (0.00274) | |
min_nights | 0.00081 ** | −0.00352 *** |
(0.00032) | (0.00054) | |
is_location_exact | 0.0302 *** | 0.02766 *** |
(0.00296) | (0.0031) | |
security_deposit | 0.00006 *** | 0.00007 *** |
(0.00001) | (0.00001) | |
cleaning_fee | 0.00012 | 0.0003 *** |
(0.00008) | (0.00009) | |
guests_included | 0.00761 *** | 0.01004 *** |
(0.00109) | (0.00114) | |
extra_people | −0.00014 | −0.00052 *** |
(0.00014) | (0.00014) | |
instant_bookable | −0.00179 | −0.00074 |
(0.00296) | (0.00308) | |
quarter | 0.00743 *** | 0.00723 *** |
(0.00112) | (0.00117) | |
porto | 0.04531 *** | 0.05057 *** |
(0.00556) | (0.00624) | |
neighbor | 0.00511 | 0.02015 *** |
(0.00546) | (0.00618) | |
dist_station | −0.01358 *** | −0.01853 *** |
(0.00305) | (0.00325) | |
dist_poi | −0.06122 *** | −0.0641 *** |
(0.00331) | (0.00343) | |
dist_coastline | −0.06751 *** | −0.06805 *** |
(0.00336) | (0.00367) | |
accommodates | 0.02204 *** | 0.01885 *** |
(0.0011) | (0.00117) | |
room_type | 0.19572 *** | 0.20479 *** |
(0.00382) | (0.00405) | |
nbedrooms | 0.03751 *** | 0.03969 *** |
(0.00223) | (0.00235) | |
nbathrooms | 0.03577 *** | 0.04361 *** |
(0.00243) | (0.00258) | |
airconditioning | 0.0621 *** | 0.05985 *** |
(0.00286) | (0.00294) | |
pool | 0.18547 *** | 0.17014 *** |
(0.0065) | (0.00717) | |
reviews | −0.02349 *** | −0.02124 *** |
(0.00079) | (0.00082) | |
ovrating | 0.0035 *** | |
(0.00024) | ||
sentiment | 0.00884 *** | |
(0.00168) | ||
_cons | 1.49964 *** | 1.84138 *** |
(0.03093) | (0.02687) | |
Pseudo R2 | 0.50536 | 0.52573 |
SAR Model | Quality Variable | Direct | Indirect | Total |
---|---|---|---|---|
1 | Overall Rating | 0.0035023 | 0.0000010 | 0.0035033 |
2 | Sentiment Score | 0.0086416 | 0.0000029 | 0.0086445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, A.; Nunes, A.P.; Machado, L.P. How Do Reviews Impact Airbnb’s Prices? A Hedonic Approach. Tour. Hosp. 2025, 6, 181. https://doi.org/10.3390/tourhosp6040181
Almeida A, Nunes AP, Machado LP. How Do Reviews Impact Airbnb’s Prices? A Hedonic Approach. Tourism and Hospitality. 2025; 6(4):181. https://doi.org/10.3390/tourhosp6040181
Chicago/Turabian StyleAlmeida, António, António Pedro Nunes, and Luiz Pinto Machado. 2025. "How Do Reviews Impact Airbnb’s Prices? A Hedonic Approach" Tourism and Hospitality 6, no. 4: 181. https://doi.org/10.3390/tourhosp6040181
APA StyleAlmeida, A., Nunes, A. P., & Machado, L. P. (2025). How Do Reviews Impact Airbnb’s Prices? A Hedonic Approach. Tourism and Hospitality, 6(4), 181. https://doi.org/10.3390/tourhosp6040181