Ecological and Regenerative Performance of Hippophae rhamnoides L. Cultivars and Forms Maintained at the Altai Botanical Garden
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Plant Material
2.2. Sampling and Variability Assessment
2.3. Green Cutting Under Introduction Conditions
2.4. Statistical Analysis
3. Results
3.1. Regenerative Capacity and Cold Tolerance of H. rhamnoides Natural Populations
3.2. Yield, Longevity of Productivity, and Fruit Characteristics of Introduced H. rhamnoides
3.3. Formation and Stability of Clonal Thickets in the Introduced Population of H. rhamnoides
3.4. Vegetative Propagation of H. rhamnoides by Green Cutting Under Introduction Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AGB | Altai Botanical Garden |
| ANOVA | Analysis of variance |
| KA | Kaindysu population |
| KE | Kendyrlyk population |
| KS | Karatal Sands population |
| SH | Shetlasty population |
| T | Tersayryk population |
References
- Jubayer, M.F.; Mazumder, M.A.R.; Nayik, G.A.; Ansari, M.J.; Ranganathan, T.V. Hippophae rhamnoides L.: Sea buckthorn. In Immunity Boosting Medicinal Plants of the Western Himalayas; Springer Nature: Singapore, 2023; pp. 463–491. [Google Scholar]
- Liu, L.; Guo, Y.; Liu, X.; Yao, Y.; Qi, W. Relationship between the roots of Hippophae rhamnoides at different stump heights and the root microenvironment in feldspathic sandstone areas. PeerJ 2023, 11, e14819. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Tigerstedt, P.M. Geographical variation of growth rhythm, height, and hardiness, and their relations in Hippophae rhamnoides. Silva Fenn. 1995, 29, 147–156. [Google Scholar] [CrossRef]
- Li, T.S.; Schroeder, W.R. Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. HortTechnology 1996, 6, 370–380. [Google Scholar] [CrossRef]
- Enescu, C.M. Sea-buckthorn: A species with a variety of uses, especially in land reclamation. Dendrobiology 2014, 72, 71–76. [Google Scholar] [CrossRef]
- He, C.; Gao, G.; Zhang, J.; Duan, A.; Luo, H. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn. Proteome Sci. 2016, 14, 14. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Zhang, G.; Guo, J.; Dong, Z. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings. J. For. Res. 2017, 28, 255–263. [Google Scholar] [CrossRef]
- Vdovina, T.A.; Isakova, E.A.; Lagus, O.A.; Sumbembayev, A.A. Selection assessment of promising forms of natural Hippophae rhamnoides (Elaeagnaceae) populations and their offspring in the Kazakhstan Altai Mountains. Biodiversitas J. Biol. Divers. 2024, 25, 1–10. [Google Scholar] [CrossRef]
- Bruvelis, A. Sea buckthorn Hippophaë rhamnoides L.—Taxonomy, distribution and introduction in Baltic States. Veg. Latv. 2007, 13, 33–38. [Google Scholar]
- Tian, L.; Wu, W.; Zhou, X.; Zhang, D.; Yu, Y.; Wang, H.; Wang, Q. The ecosystem effects of sand-binding shrub Hippophae rhamnoides in alpine semi-arid desert in the northeastern Qinghai–Tibet plateau. Land 2019, 8, 183. [Google Scholar] [CrossRef]
- Kubczak, M.; Khassenova, A.B.; Skalski, B.; Michlewska, S.; Wielanek, M.; Skłodowska, M.; Ionov, M. Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Sci. Rep. 2022, 12, 1095. [Google Scholar] [CrossRef]
- Vdovina, T.; Lagus, O.; Vinokurov, A.; Aimenova, Z.; Sumbembayev, A. Assessment of biochemical composition of fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.). Metabolites 2025, 15, 256. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Wang, Q.; Huang, H.; Chen, J.; Wu, G.; Zhu, M.; Ma, Q. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.). J. Food Biochem. 2023, 2023, 4839124. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, J.; Shi, Y.; Zhang, X.; Zhai, B.; Guo, D.; Luan, F. Extraction techniques, structural features and biological functions of Hippophae rhamnoides polysaccharides: A review. Int. J. Biol. Macromol. 2024, 263, 130206. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; He, Z.; Hong, C.; Xie, S.; Zha, X. Extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn (Hippophae rhamnoides L.): A review. J. Ethnopharmacol. 2024, 324, 117809. [Google Scholar] [CrossRef]
- Ranjith, A.; Kumar, K.S.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. J. Am. Oil Chem. Soc. 2006, 83, 359–364. [Google Scholar] [CrossRef]
- Cakir, A. Essential oil and fatty acid composition of the fruits of Hippophae rhamnoides L. (Sea Buckthorn) and Myrtus communis L. from Turkey. Biochem. Syst. Ecol. 2004, 32, 809–816. [Google Scholar] [CrossRef]
- Tiitinen, K.M.; Yang, B.; Haraldsson, G.G.; Jonsdottir, S.; Kallio, H.P. Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties. J. Agric. Food Chem. 2006, 54, 2508–2513. [Google Scholar] [CrossRef]
- Sabir, S.M.; Maqsood, H.; Hayat, I.; Khan, M.Q.; Khaliq, A. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin. J. Med. Food 2005, 8, 518–522. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Kumar, M.Y.; Gupta, A. Antioxidant, cytoprotective and antibacterial effects of sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 2010, 48, 3443–3448. [Google Scholar] [CrossRef]
- Olas, B.; Kontek, B.; Malinowska, P.; Żuchowski, J.; Stochmal, A. Hippophae rhamnoides L. fruits reduce the oxidative stress in human blood platelets and plasma. Oxid. Med. Cell. Longev. 2016, 2016, 4692486. [Google Scholar] [CrossRef]
- Tian, H.; Ling, N.; Guo, C.; Gao, M.; Wang, Z.; Liu, B.; Li, W. Immunostimulatory activity of sea buckthorn polysaccharides via TLR2/4-mediated MAPK and NF-κB signaling pathways in vitro and in vivo. Int. J. Biol. Macromol. 2024, 283, 137678. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, N.V.; Arkhipov, A.A.; Zubarev, Y.A.; Novakovskiy, R.O.; Turba, A.A.; Pushkova, E.N.; Dmitriev, A.A. Genetic diversity of Hippophae rhamnoides varieties with different fruit characteristics based on whole-genome sequencing. Front. Plant Sci. 2025, 16, 1542552. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Krutovsky, K.V.; Mueller, M.; Gailing, O.; Khan, A.A.; Buerkert, A.; Wiehle, M. Morphological and genetic diversity of sea buckthorn (Hippophae rhamnoides L.) in the Karakoram mountains of northern Pakistan. Diversity 2018, 10, 76. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Zhang, G.; Luan, G.; Chen, S.; Meng, J.; Suo, Y. Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers. Molecules 2018, 23, 1048. [Google Scholar] [CrossRef]
- Jhajhariya, M.; Mangla, Y.; Chandra, A.; Goel, S.; Tandon, R. Variable resource allocation pattern, biased sex-ratio, and extent of sexual dimorphism in subdioecious Hippophae rhamnoides. PLoS ONE 2024, 19, e0302211. [Google Scholar] [CrossRef]
- Nybom, H.; Ruan, C.; Rumpunen, K. The systematics, reproductive biology, biochemistry, and breeding of sea buckthorn—A review. Genes 2023, 14, 2120. [Google Scholar] [CrossRef]
- Dolkar, P.; Dolkar, D.; Angmo, S.; Srivastava, R.B.; Stobdan, T. An improved method for propagation of seabuckthorn (Hippophae rhamnoides L.) by cuttings. Natl. Acad. Sci. Lett. 2016, 39, 323–326. [Google Scholar] [CrossRef]
- Shah, S.R.U.; Plaksina, T.; Sriskandarajah, S.; Lundquist, P.O. Shoot organogenesis from roots of seabuckthorn (Hippophaë rhamnoides L.): Structure, initiation and effects of phosphorus and auxin. Trees 2015, 29, 1989–2001. [Google Scholar] [CrossRef]
- Vdovina, T.; Lagus, O.; Isakova, E. Peculiarities of the root-suckering ability of Hippophae rhamnoides L. plants (East Kazakhstan region). Fundam. Exp. Biol. 2025, 11930, 38–47. [Google Scholar] [CrossRef]
- Sriskandarajah, S.; Lundquist, P.O. High frequency shoot organogenesis and somatic embryogenesis in juvenile and adult tissues of seabuckthorn (Hippophae rhamnoides L.). Plant Cell Tissue Organ Cult. (PCTOC) 2009, 99, 259–268. [Google Scholar] [CrossRef]
- Liu, C.Q.; Xia, X.L.; Yin, W.L.; Zhou, J.H.; Tang, H.R. Direct somatic embryogenesis from leaves, cotyledons and hypocotyls of Hippophae rhamnoides. Biol. Plant. 2007, 51, 635–640. [Google Scholar] [CrossRef]
- Zubarev, Y.A.; Gunin, A.V.; Vorobjeva, A.V. Rooting green cuttings of Altai seabuckthorn cultivars in industrial-scale experiment. RUDN J. Agron. Anim. Ind. 2022, 17, 131–145. [Google Scholar] [CrossRef]
- Güneş, M.; Alkaç, O.S.; Öcalan, O.N. Propagation of some sea buckthorn (Hippophae rhamnoides) cultivars by semi-hardwood cuttings. J. New Results Sci. 2020, 9, 32–38. [Google Scholar]
- Gunin, A.V.; Panteleeva, E.I.; Zubarev, Y.A.; Pugach, V.A.; Vorobyeva, A.V. Evaluation of sea buckthorn varieties and hybrids by indicators affecting harvesting efficiency. Vestn. Altai State Agrar. Univ. 2018, 7, 70–76. (In Russian) [Google Scholar]
- Sumbembayev, A.A.; Kotukhov, Y.A.; Danilova, A.N.; Aitzhan, M. Endemic and endangered vascular flora of Kazakhstan’s Altai Mountains: A baseline for sustainable biodiversity conservation. Sustainability 2025, 17, 7283. [Google Scholar] [CrossRef]
- Almerekova, S.; Yermagambetova, M.; Sumbembayev, A.; Imanbayeva, A.; Turuspekov, Y. DNA barcoding of Hippophae rhamnoides L. collected from natural and introduced populations in Kazakhstan. Eurasian J. Appl. Biotechnol. 2024, 3, 9–19. [Google Scholar] [CrossRef]
- Kondrashov, V.T. Methodology for describing wild forms of sea buckthorn. Plant Resour. 1977, 13, 140–144. (In Russian) [Google Scholar]
- Danusevicius, D.; Lindgren, D. Efficiency of selection based on phenotype, clone and progeny testing in long-term breeding. Silvae Genet. 2002, 51, 19–25. [Google Scholar]
- Dragavtseva, I.A.; Bandurko, I.A.; Efimova, I.L. Limiting environmental factors determining the productivity of perennial garden plantations. New Technol. 2013, 2, 110–114. (In Russian) [Google Scholar]
- Filipchenko, Y.A. Variability and Methods of Its Study; Nauka: Moscow, Russia, 1978; p. 236. (In Russian) [Google Scholar]
- Sinskaya, E.N. The species and its structural parts at various levels of the organic world. Bull. VIR 1979, 91, 7–24. (In Russian) [Google Scholar]
- Iroshnikov, A.I.; Mamaev, S.A.; Pravdin, L.F.; Shcherbakov, M.A. Methodology for Studying Intraspecific Variability of Tree Species; Nauka: Moscow, Russia, 1973; p. 31. (In Russian) [Google Scholar]
- Dale, A.; Galić, D. Repetitive vegetative propagation of first-year sea buckthorn (Hippophae rhamnoides L.) cuttings. Can. J. Plant Sci. 2017, 98, 609–615. [Google Scholar] [CrossRef]
- Wang, B.L.; Zhao, Y.; Han, X.Y. Effect of different hormone treatments and matrix formulations on rooting of micro-cutting of Hippophae rhamnoides. Acta Hortic. Sin. 2023, 50, 101–110. [Google Scholar]
- Lan, D.; Xing, Z.; Xing, J. Research on rooting cuttings of hard branch of Hippophae rhamnoides. Agric. Sci. Technol. 2015, 16, 1306. [Google Scholar]
- Zenkova, M.; Pinchykova, J. Chemical composition of sea-buckthorn and highbush blueberry fruits grown in the Republic of Belarus. Food Sci. Appl. Biotechnol. 2019, 2, 121–129. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Yang, M.; Bao, L.; Ge, J. Phylogeographic study of Chinese seabuckthorn (Hippophae rhamnoides subsp. sinensis Rousi) reveals two dis-tinct haplotype groups and multiple microrefugia on the Qinghai—Tibet Plateau. Ecol. Evol. 2014, 4, 4370–4379. [Google Scholar]
- Bedareva, O.M.; Silvander, V.G.; Muracheva, L.S.; Matyukha, A.V. Conservation and rational use of populations of sea buckthorn (Hippophae rhamnoides L.) in the Kaliningrad region. Agrar. Russ. 2014, 2, 39–41. (In Russian) [Google Scholar]
- Shkolnikova, M.N.; Rozhnov, E.D.; Chugunova, O.V. Distinctive features of the biochemical composition of fruits of Altai sea buckthorn varieties. Life Genomes 2022, 3, 36. (In Russian) [Google Scholar]
- Bogomolova, N.I.; Lupin, M.V. Biological productivity potential of sea buckthorn in natural and industrial plantations of Russia. Vestn. Agric. Sci. 2021, 6, 62–67. (In Russian) [Google Scholar]
- Trineeva, O.V.; Rudaya, M.A.; Slivkin, A.I. Study of the carotenoid composition of fruits of different sea buckthorn varieties using thin-layer chromatography. Chem. Plant Raw Mater. 2020, 1, 223–228. (In Russian) [Google Scholar] [CrossRef]
- Mamedova, S.M.; Novruzov, E.N. Content and qualitative composition of carotenoids in the fruits of some forms of sea buckthorn (Hippophae rhamnoides L.) growing in Northern Azerbaijan. Bull. Mosc. Reg. State Univ. Ser. Geogr. Environ. Living Syst. 2016, 3, 33–41. (In Russian) [Google Scholar]
- Khovalyg, N. Bioresource potential of sea buckthorn phytocenes in the conditions of Southern Siberia. In Proceedings of the E3S Web of Conferences—VII International Conference on Actual Problems of the Energy Complex and Environmental Protection (APEC-VII-2024), Karshi, Uzbekistan, 22–24 January 2024; EDP Sciences: Les Ulis, France, 2024; Volume 524, p. 02013. [Google Scholar]



| Population | Age Category | Number of Plants per ha (Count.) | % of Total |
|---|---|---|---|
| Kendyrlyk (KE) | Juvenile (1–5 years) | 1740 | 65.0 |
| Intermediate (6–10 years) | 482 | 18.0 | |
| Pre-mature (10–15 years) | 148 | 5.5 | |
| Mature (16–20 years) | 106 | 4.1 | |
| Senescent (21–25 years) | 197 | 7.4 | |
| Total | 2673 | 100 | |
| Kaindysu (KA) | Juvenile (1–5 years) | 540 | 30.7 |
| Intermediate (6–10 years) | 415 | 23.6 | |
| Pre-mature (10–15 years) | 605 | 34.4 | |
| Mature (16–20 years) | 135 | 7.7 | |
| Senescent (21–25 years) | 65 | 3.6 | |
| Total | 1760 | 100 | |
| Tersayryk (T) | Juvenile (1–5 years) | 2360 | 72.6 |
| Intermediate (6–10 years) | 380 | 11.7 | |
| Pre-mature (10–15 years) | 368 | 11.3 | |
| Mature (16–20 years) | 86 | 2.6 | |
| Senescent (21–25 years) | 53 | 1.8 | |
| Total | 3247 | 100 | |
| Shetlasty (SH) | Juvenile (1–5 years) | 5173 | 79.8 |
| Intermediate (6–10 years) | 556 | 8.6 | |
| Pre-mature (10–15 years) | 483 | 7.5 | |
| Mature (16–20 years) | 123 | 1.9 | |
| Senescent (21–25 years) | 143 | 2.2 | |
| Total | 6478 | 100 | |
| Karatal Sands (KS) | Juvenile (1–5 years) | 81 | 22 |
| Intermediate (6–10 years) | 59 | 16 | |
| Pre-mature (10–15 years) | 36 | 10 | |
| Mature (16–20 years) | 191 | 52 | |
| Senescent (21–25 years) | 367 | 100 |
| Form, Cultivar | Non-Treated (Control) | Heteroauxin, Concentration of 0.015% | Ecogel, Concentration of 0.01% | HB-101, Concentration of 0.02% |
|---|---|---|---|---|
| Rooting, % | ||||
| Yubileynaya Kotukhova | 69.5 | 78.7 | 87.0 | 90.2 |
| Pamyati Baytulina | 64.2 | 68.6 | 67.3 | 69.6 |
| Shetlastinka | 71.2 | 69.2 | 68.4 | 90.3 |
| Plakuchaya | 60.7 | 76.2 | 83.4 | 89.7 |
| Fakel | 67.7 | 75.6 | 78.5 | 82.2 |
| Feyyerverk | 65.6 | 73.0 | 72.5 | 80.1 |
| Asem | 62.4 | 81.9 | 84.1 | 86.4 |
| Solnyshko (1-18) | 70.8 | 80.4 | 79.7 | 83.9 |
| Nesravnennaya SH-9-81 (3-27) | 68.9 | 80.2 | 83.7 | 82.7 |
| Krasnoplodnaya KE-14-81 (4-27) | 63.8 | 62.7 | 64.1 | 70.1 |
| Gustoy tumanT-2-82 (1-24) | 72.0 | 70.1 | 79.4 | 81.8 |
| Krasavchik KE-8-82 (2-20) | 66.3 | 67.1 | 72.3 | 78.3 |
| Bogatyr T-17-82 (1-21) | 61.9 | 72.7 | 71.9 | 71.2 |
| Mean values | 66.5 ± 3.8 | 73.5 ± 5.7 | 76.4 ± 7.3 | 81.2 ± 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vdovina, T.; Lagus, O.; Isakova, E.; Sumbembayev, A. Ecological and Regenerative Performance of Hippophae rhamnoides L. Cultivars and Forms Maintained at the Altai Botanical Garden. J. Zool. Bot. Gard. 2025, 6, 58. https://doi.org/10.3390/jzbg6040058
Vdovina T, Lagus O, Isakova E, Sumbembayev A. Ecological and Regenerative Performance of Hippophae rhamnoides L. Cultivars and Forms Maintained at the Altai Botanical Garden. Journal of Zoological and Botanical Gardens. 2025; 6(4):58. https://doi.org/10.3390/jzbg6040058
Chicago/Turabian StyleVdovina, Tatiana, Olga Lagus, Elena Isakova, and Aidar Sumbembayev. 2025. "Ecological and Regenerative Performance of Hippophae rhamnoides L. Cultivars and Forms Maintained at the Altai Botanical Garden" Journal of Zoological and Botanical Gardens 6, no. 4: 58. https://doi.org/10.3390/jzbg6040058
APA StyleVdovina, T., Lagus, O., Isakova, E., & Sumbembayev, A. (2025). Ecological and Regenerative Performance of Hippophae rhamnoides L. Cultivars and Forms Maintained at the Altai Botanical Garden. Journal of Zoological and Botanical Gardens, 6(4), 58. https://doi.org/10.3390/jzbg6040058

