Effect of Prolonged Serum Storage Time and Varied Temperatures on Biochemical Values in African Savanna Elephants (Loxodonta africana)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collicutt, N.B.; Garner, B.; Berghaus, R.D.; Camus, M.S.; Hart, K. Effect of delayed serum separation and storage temperature on serum glucose concentration in horse, dog, alpaca, and sturgeon. Vet. Clin. Pathol. 2015, 44, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Eisenhawer, E.; Courtney, C.H.; Raskin, R.E.; Jacobson, E. Relationship between separation time of plasma from heparinized whole blood on plasma biochemical analytes of loggerhead sea turtles (Caretta caretta). J. Zoo Wildl. Med. 2008, 39, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Rendle, D.I.; Heller, J.; Hughes, K.J.; Innocent, G.T.; Durham, A.E. Stability of common biochemistry analytes in equine blood stored at room temperature. Equine Vet. J. 2009, 41, 428–432. [Google Scholar] [CrossRef]
- Lemaître, J.-F.; Gaillard, J.-M.; Lackey, L.B.; Clauss, M.; Müller, D.W.H. Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores. Exp. Gerontol. 2013, 48, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Barboza, P.S.; Rombach, E.P.; Blake, J.E.; John, A. Nagy Copper status of muskoxen: A comparison of wild and captive populations. J. Wildl. Dis. 2003, 39, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greig, D.J.; Gulland, F.M.D.; Rios, C.A.; Hall, A.J. Hematology and serum chemistry in stranded and wild-caught harbor seals in central California: Reference intervals, predictors of survival, and parameters affecting blood variables. J. Wildl. Dis. 2010, 46, 1172–1184. [Google Scholar] [CrossRef]
- May-Júnior, J.A.; Songsasen, N.; Azevedo, F.C.; Santos, J.P.; Paula, R.C.; Rodrigues, F.H.G.; Rodden, M.D.; Wildt, D.E.; Morato, R.G. Hematology and blood chemistry parameters differ in free-ranging maned wolves (Chyrysocyon brachyurus) living in the Serra Da Canastra National Park versus adjacent farmlands, Brazil. J. Wildl. Dis. 2009, 45, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.; Nunes, T.; Fonseca, C.; Vieira-Pinto, M.; Almeida, V.; Gortázar, C.; Correia-Neves, M. Spatial analysis of wildlife tuberculosis based on a serologic survey using dried blood spots, Portugal. Emerg. Infect. Dis. 2018, 24, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Halliday, J.E.B.; Meredith, A.L.; Knobel, D.L.; Shaw, D.J.; Bronsvoort, B.M.D.C.; Cleaveland, S. A framework for evaluating animals as sentinels for infectious disease surveillance. J. R. Soc. Interface 2007, 4, 973–984. [Google Scholar] [CrossRef]
- Kophamel, S.; Illing, B.; Ariel, E.; Difalco, M.; Skerratt, L.F.; Hamann, M.; Ward, L.C.; Méndez, D.; Munns, S.L. Importance of health assessments for conservation in noncaptive wildlife. Conserv. Biol. 2021, 36, e13724. [Google Scholar] [CrossRef]
- Harder, J. Reproduction and Hormones. In The Wildlife Techniques Field Manual: Volume 1: Research; Johns Hopkins University Press: Baltimore, MD, USA, 2012; Volume 1, pp. 502–525. ISBN 978-1-4214-0159-1. [Google Scholar]
- Oyler-McCance, S.; Leberg, P. Conservation Genetics and Molecular Ecology in Wildlife Management. In The Wildlife Techniques Field Manual: Volume 1: Research; Johns Hopkins University Press: Baltimore, MD, USA, 2012; Volume 1, pp. 526–546. ISBN 978-1-4214-0159-1. [Google Scholar]
- Stoot, L.J.; Cairns, N.A.; Cull, F.; Taylor, J.J.; Jeffrey, J.D.; Morin, F.; Mandelman, J.W.; Clark, T.D.; Cooke, S.J. Use of protable blood physiology point-of-care devices for basic and applied research on vertebrates: A review. Conserv. Physiol. 2014, 2, cou011. [Google Scholar] [CrossRef] [PubMed]
- Reece, W.O.; Trampel, D.W.; Koehler, K.J. Effects of storage time and temperature after blood sampling from turkeys on plasma concentrations of potassium, sodium, and chloride. Poult. Sci. 2006, 85, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Day, R.L.; Heard, D.J.; LaBlanc, D. The effect of time at which plasma separation occurs on biochemical values in small island flying foxes (Pteropus hypomelanus). J. Zoo Wildl. Med. 2001, 32, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, A.; Afshari, A.; Bahadori, H.; Mohri, M.; Seifi, H.A. Serum constituents analyses in dairy cows: Effects of duration and temperature of the storage of clotted blood. Res. Vet. Sci. 2008, 85, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Oddoze, C.; Lombard, E.; Portugal, H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin. Biochem. 2012, 45, 464–469. [Google Scholar] [CrossRef]
- Brown, J.; Theis, L.; Kerr, L.; Zakhidova, N.; O’Connor, K.; Uthman, M.; Oden, Z.M.; Richards-Kortum, R. A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low-resource settings. Am. Soc. Trop. Med. Hyg. 2011, 85, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Byagathvalli, G.; Pomerantz, A.; Sinha, S.; Standeven, J.; Bhamla, M.S. A 3D-printed hand-powered centrifuge for molecular biology. PLoS Biol. 2019, 17, e3000251. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-H.; Chen, C.-A.; Chen, S.-J.; Tsai, T.-T.; Chu, C.-C.; Chang, C.-C.; Chen, C.-F. Blood Plasma Separation Using a Fidget-Spinner. Anal. Chem. 2019, 91, 1247–1253. [Google Scholar] [CrossRef]
- Handzentifuge: Manual Centrifuge for Field Applications. Available online: https://www.hettweb.com/wp-content/uploads/2019/02/PS-MANUAL.pdf (accessed on 13 July 2021).
- Ada, A.O.; Joshua, I.P.; Chukwunonso, A.B. Stability of some clinical biochemistry parameters in equine serum/plasma stored at refrigerator and room temperatures: A preliminary study. Comp. Clin. Pathol. 2017, 26, 465–469. [Google Scholar] [CrossRef]
- An, B.; Park, C.-E. Evaluation of stability of serum on different storage temperatures for routine chemistry analytes. Korean J. Clin. Lab. Sci. 2014, 46, 111–116. [Google Scholar] [CrossRef]
- Flores, C.F.Y.; de Las Mercedes Hurtado Pineda, Á.; Bonilla, V.M.C.; Sáenz-Flor, K. Sample management: Stability of plasma and serum on different storage conditions. EJIFCC 2020, 31, 46–55. [Google Scholar] [PubMed]
- Evans, M.J.; Livesey, J.H.; Ellis, M.J.; Yandle, T.G. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin. Biochem. 2001, 34, 107–112. [Google Scholar] [CrossRef]
- Thoresen, S.I.; Havre, G.N.; Morberg, H.; Mowinckel, P. Effects of storage time on chemistry results from canine whole blood, heparinized whole blood, serum and heparinized plasma. Vet. Clin. Pathol. 1992, 21, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Gobush, K.; Edwards, C.; Balfour, D.; Wittemyer, G.; Maisels, F.; Taylor, R. African Savanna Elephant: Loxodona africana. Available online: https://www.iucnredlist.org/species/181008073/204401095 (accessed on 15 June 2021).
- Gobush, K.; Edwards, C.; Maisels, F.; Wittemyer, G.; Balfour, D.; Taylor, R. African Forest Elephant: Loxodona cyclotis. Available online: https://www.iucnredlist.org/species/181007989/204404464 (accessed on 15 June 2021).
- Scott, M.A.; Stockham, S.L. Fundamentals of Veterinary Clinical Pathology, 2nd ed.; Wiley-Blackwell: Ames, IA, USA, 2008; ISBN 978-0-470-62641-2. [Google Scholar]
- Franca, C.N.; Mendes, C.C.; Ferreira, C. Time collection and storage conditions of lipid profile. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 2018, 15, e6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, F.; Abrão, N.B.; Queiroz, T.D.; Arhnold, E.; Araújo, L.B.M.; Martins, D.B. Serum biochemistry of the Arrau turtle (Podocnemis expansa): Frozen analyte stability and the effects of long-term storage. Vet. Clin. Pathol. 2020, 49, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.; Tifigiu, E.; Boroujeni, A.M.; Lin, B.; Laskar, D.; Shafique, K.; Zuretti, A.; Michl, J.; Pincus, M.R. Stability of Values for the Activities of Critical Enzymes Assayed in Serum Frozen for Prolonged Time Periods. Ann. Clin. Lab. Sci. 2018, 48, 618–626. [Google Scholar]
- Steyrer, C.; Miller, M.; Hewlett, J.; Buss, P.; Hooijberg, E.H. Reference Intervals for Hematology and Clinical Chemistry for the African Elephant (Loxodonta africana). Front. Vet. Sci. 2021, 8, 599387. [Google Scholar] [CrossRef]
Day of Analysis | Day 0 (Control) | Day 5 | Day 10 | ||||
---|---|---|---|---|---|---|---|
Storage Temp | Not Applicable | Refrigeration (2.2 °C) | Room Temp (~23 °C) | Heat (32.2 °C) | Refrigeration (2.2 °C) | Room Temp (~23 °C) | Heat (32.2°C) |
Total Protein (g/dL) | 7.55 ± 0.54 | 7.51 ± 0.41 | 7.48 ± 0.39 | 7.50 ± 0.31 | 7.38 ± 0.39 | 7.35 ±0.42 | 7.33 ± 0.34 |
Albumin (g/dL) | 2.90 ± 0.14 | 2.88 ± 0.04 | 2.88 ± 0.07 | 2.83 ± 0.10 | 2.86 ± 0.10 | 2.81 ± 0.08 | 2.83 ± 0.12 |
Globulin (g/dL) | 4.65 ± 0.61 | 4.55 ± 0.57 | 4.50 ± 0.54 | 4.60 ± 0.55 | 4.48 ± 0.54 | 4.5 ±0.55 | 4.45 ± 0.51 |
AST (IU/L) | 17.1 ± 2.31 | 16.1 ± 2.14 | 14.3 ± 2.16 * | 12.0 ± 1.41 * | 16.3 ± 2.16 | 12.0 ± 1.55 * | 8.5 ± 1.04 |
ALP (IU/L) | 60.2 ± 5.91 | 57.3 ± 6.56 | 57.0 ± 6.06 | 57.0 ± 7.46 | 56.1 ± 7.94 | 54.0 ± 4.98 | 52.5 ± 6.22 * |
GGT (IU/L) | 8.0 ± 0.89 | 8.0 ± 0.89 | 7.6 ± 0.82 | 8.0 ± 0.89 | 8.0 ± 0.89 | 7.6 ±0.82 | 7.8 ± 0.98 |
Total Bilirubin (mg/dL) | 0.16 ± 0.05 | 0.16 ± 0.05 | 0.10 ±0.0 * | 0.10 ± 0.0 * | 0.16 ± 0.05 | 0.10 ± 0.0 | 0.10 ± 0.0 * |
BUN (mg/dL) | 11.1 ± 1.94 | 8.8 ± 0.98 * | 9.0 ± 1.10 * | 9.0 ± 1.09 * | 9.0 ± 1.55 * | 8.83 ± 0.41 * | 9.16 ± 1.33 * |
Creatinine (mg/dL) | 1.30 ± 0.25 | 1.16 ± 0.26 | 1.23 ± 0.23 | 1.18 ± 0.21 | 1.23 ± 0.25 | 1.25 ± 0.23 | 1.23 ± 0.22 |
Phosphorus (mg/dL) | 4.10 ± 0.18 | 4.15 ± 0.15 | 4.15 ± 0.21 | 4.18 ± 0.11 | 4.46 ± 0.37 | 4.25 ± 0.40 | 4.30 ±0.36 |
Glucose (mg/dL) | 4.10 ± 0.18 | 81.1 ± 6.24 | 81.66 ± 6.53 | 74.0 ± 5.75 | 82.5 ± 9.01 | 79.5 ± 9.81 | 80.6 ± 10.38 |
Calcium (mg/dL) | 10.10 ± 0.34 | 10.10 ± 0.29 | 10.08 ± 0.16 | 10.16 ± 0.19 | 10.00 ± 0.12 | 9.68 ± 0.70 * | 9.8 ± 0.55 |
Sodium (mEq/L) | 128.0 ± 1.17 | 129.1 ± 1.16 | 129.3 ± 0.81 | 129.0 ± 1.09 | 130.3 ± 1.63 | 130.8 ±2.40 | 130.5 ± 2.07 |
Potassium (mEq/L) | 4.50 ± 0.23 | 4.53 ± 0.19 | 4.53 ± 0.16 | 4.56 ± 0.21 | 4.51 ± 0.20 | 4.58 ± 0.17 | 4.58 ± 0.20 |
Chloride (mEq/L) | 88.1 ± 0.75 | 88.1 ± 0.41 | 88.3 ± 0.51 | 88.3 ± 0.52 | 87.6 ± 0.52 | 88.1 ± 0.75 | 88.5 ± 1.97 |
Cholesterol (mg/dL) | 79.5 ± 18.5 | 77.3 ± 17.06 | 77.83 ± 16.94 | 78.0 ± 17.17 | 74.3 ± 15.88 | 74.6 ± 18.28 | 73.6 ± 15.24 |
Creatinine Kinase (IU/L) | 228.6 ± 36.61 | 213.6 ± 32.82 | 185.8 ± 40.89 | 146.8 ± 28.82 * | 205.0 ± 43.50 | 174.5 ± 35.84 * | 133.16 ± 39.30 * |
LDH (IU/L) | 308.5 ± 48.45 | 192.3 ± 53.32 * | 275.8 ± 51.15 | 271.3 ± 50.32 | 154.5 ± 40.91 * | 232.6 ± 66.49 * | 230.6 ± 62.87 * |
Analyte | Time Comparison (Days Post-Collection) | Storage Temperature Comparison | Average Change |
---|---|---|---|
AST | Day 0 vs. Day 5 | Room Temperature | 16.4% decrease |
Day 0 vs. Day 5 | Heat | 29.8% decrease | |
Day 0 vs. Day 10 | Room Temperature | 29.8% decrease | |
Day 0 vs. Day 10 | Heat | 50.3% decrease | |
ALP | Day 0 vs. Day 10 | Heat | 13.0% decrease |
Total Bilirubin | Day 0 vs. Day 5 | Room Temperature | 37.5% decrease |
Day 0 vs. Day 5 | Heat | 37.5% decrease | |
Day 0 vs. Day 10 | Room Temperature | 37.5% decrease | |
Day 0 vs. Day 10 | Heat | 37.5% decrease | |
BUN | Day 0 vs. Day 5 | Refrigerated | 20.7% decrease |
Day 0 vs. Day 5 | Room Temperature | 18.9% decrease | |
Day 0 vs. Day 5 | Heat | 18.9% decrease | |
Day 0 vs. Day 10 | Refrigerated | 18.9% decrease | |
Day 0 vs. Day 10 | Room Temperature | 20.5% decrease | |
Day 0 vs. Day 10 | Heat | 17.5% decrease | |
Phosphorus | Day 0 vs. Day 10 | Refrigerated | 8.8% increase |
Calcium | Day 0 vs. Day 10 | Room Temperature | 4.2% decrease |
Creatine Kinase | Day 0 vs. Day 5 | Heat | 35.8% decrease |
Day 0 vs. Day 10 | Room Temperature | 23.7% decrease | |
Day 0 vs. Day 10 | Heat | 41.7% decrease | |
LDH | Day 0 vs. Day 5 | Refrigerated | 37.7% decrease |
Day 0 vs. Day 10 | Refrigerated | 49.9% decrease | |
Day 0 vs. Day 10 | Room Temperature | 24.6% decrease | |
Day 0 vs. Day 10 | Heat | 25.3% decrease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlake, E.L.; Cassady, K.R.; Gruber, E.J.; Minter, L.J. Effect of Prolonged Serum Storage Time and Varied Temperatures on Biochemical Values in African Savanna Elephants (Loxodonta africana). J. Zool. Bot. Gard. 2023, 4, 12-20. https://doi.org/10.3390/jzbg4010002
Schlake EL, Cassady KR, Gruber EJ, Minter LJ. Effect of Prolonged Serum Storage Time and Varied Temperatures on Biochemical Values in African Savanna Elephants (Loxodonta africana). Journal of Zoological and Botanical Gardens. 2023; 4(1):12-20. https://doi.org/10.3390/jzbg4010002
Chicago/Turabian StyleSchlake, Emily L., Katherine R. Cassady, Erika J. Gruber, and Larry J. Minter. 2023. "Effect of Prolonged Serum Storage Time and Varied Temperatures on Biochemical Values in African Savanna Elephants (Loxodonta africana)" Journal of Zoological and Botanical Gardens 4, no. 1: 12-20. https://doi.org/10.3390/jzbg4010002
APA StyleSchlake, E. L., Cassady, K. R., Gruber, E. J., & Minter, L. J. (2023). Effect of Prolonged Serum Storage Time and Varied Temperatures on Biochemical Values in African Savanna Elephants (Loxodonta africana). Journal of Zoological and Botanical Gardens, 4(1), 12-20. https://doi.org/10.3390/jzbg4010002