Comparison of Hematocrit and Biochemical Analytes among Two Point-of-Care Analyzers (EPOC and i-STAT Alinity v) and a Veterinary Diagnostic Laboratory in the African Savanna Elephant (Loxodonta africana) and the Southern White Rhinoceros (Ceratotherium simum simum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Hematological and Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emslie, R. Ceratotherium simum. The IUCN Red List of Threatened Species. 2012, e.T4185A16980466.en. Available online: http://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T4185A16980466.en (accessed on 20 March 2022).
- Gobush, K.S.; Edwards, C.T.T.; Balfour, D.; Wittemyer, G.; Maisels, F.; Taylor, R.D. Loxodonta africana (amended version of 2021 assessment). The IUCN Red List Threat Species. 2021, e.T181008073A204401095. Available online: https://dx.doi.org/10.2305/iucn.uk.2021-2.rlts.t181008073a204401095.en (accessed on 17 April 2022).
- Chanyandura, A.; Muposhi, V.K.; Gandiwa, E.; Muboko, N. An analysis of threats, strategies, and opportunities for African rhinoceros conservation. Ecol. Evol. 2021, 11, 5892–5910. [Google Scholar] [CrossRef] [PubMed]
- Compaore, A.; Sirima, D.; Hema, E.M.; Doamba, B.; Ajong, S.N.; Di Vittorio, M.; Luiselli, L. Correlation between increased human-elephant conflict and poaching of elephants in Burkina Faso (West Africa). Eur. J. Wildl. Res. 2020, 66, 24. [Google Scholar] [CrossRef]
- Fritz, H. Long-term field studies of elephants: Understanding the ecology and conservation of a long-lived ecosystem engineer. J. Mammal. 2017, 98, 603–611. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Ndaimani, H.; Tagwireyi, P.; Zvidzai, M.; Madiri, T.H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 2020, 66, 1. [Google Scholar] [CrossRef]
- Nhleko, Z.N.; Ahrens, R.; Ferreira, S.M.; McCleery, R.A. Poaching is directly and indirectly driving the decline of South Africa’s large population of white rhinos. Anim. Conserv. 2021, 25, 151–163. [Google Scholar] [CrossRef]
- Penny, S.G.; White, R.L.; Scott, D.M.; MacTavish, L.; Pernetta, A.P. Using drones and sirens to elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proc. R. Soc. B 2019, 286, 20191135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candra, D.; Riyanto, M.A.C.T.; Barry, J.; Radcliffe, R.W. Hematology and serum biochemistry of Sumatran rhinoceros (Dicerorhinus sumatrensis) in a rainforest sanctuary in Way Kambas National Park, Indonesia. J. Zoo Wildl. Med. 2013, 44, 280–284. [Google Scholar] [CrossRef]
- Miller, M.A.; Buss, P.E. Rhinoceridae (Rhinoceroses). In Fowler’s Zoo and Wild Animal Medicine, 8th ed.; Miller, R.E., Fowler, M.E., Eds.; Elsevier: St. Louis, MO, USA, 2015; pp. 538–547. [Google Scholar] [CrossRef]
- Silva, I.D.; Kuruwita, V.Y. Hematology, plasma, and serum biochemistry values in domesticated elephants (Elephas maximus ceylonicus) in Sri Lanka. J. Zoo Wildl. Med. 1993, 24, 440–444. [Google Scholar]
- Thapa, J.; Mikota, S.K.; Gaihre, K.P.; Paudel, S.; Singh, D.K.; Dhakal, I.P.; Nakajima, C.; Suzuki, Y. Tuberculosis seroprevalence and comparison of hematology and biochemistry parameters between seropositive and seronegative captive Asian elephants in Nepal. J. Vet. Med. Sci. 2021, 83, 1278–1283. [Google Scholar] [CrossRef]
- Wiedner, E. Proboscidea. In Fowler’s Zoo and Wild Animal Medicine, 8th ed.; Miller, R.E., Fowler, M.E., Eds.; Elsevier: St. Louis, MO, USA, 2015; pp. 517–532. [Google Scholar] [CrossRef]
- Buss, P.; Miller, M.; Fuller, A.; Haw, A.; Stout, E.; Olea-Popelka, F.; Meyer, L. Postinduction butorphanol administration alters oxygen consumption to improve blood gases in etorphine-immobilized white rhinoceros. Vet. Anaesth. Analg. 2018, 45, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Buss, P.; Olea-Popelka, F.; Meyer, L.; Hofmeyr, J.; Mathebula, N.; Kruger, M.; Brüns, A.; Martin, L.; Miller, M. Evaluation of cardiorespiratory, blood gas, and lactate values during extended immobilization of white rhinoceros (Ceratotherium simum). J. Zoo Wildl. Med. 2015, 46, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooijberg, E.H.; Steenkamp, G.; Buss, P.; Goddard, A. Method comparison and generation of plasma biochemistry RIs for the white rhinoceros on a point-of-care and wet chemistry analyzer. Vet. Clin. Pathol. 2017, 46, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Hooijberg, E.H.; Steenkamp, G.; du Preez, J.P.; Goddard, A. Analytic and quality control validation and assessment of field performance of a point-of-care chemistry analyzer for use in the white rhinoceros. Vet. Clin. Pathol. 2017, 46, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Horne, W.A.; Loomis, M.R. Elephants. In Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd ed.; West, G., Heard, D., Caulkett, N., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 703–719. [Google Scholar] [CrossRef] [Green Version]
- Tarbert, D.K.; Behling-Kelly, E.; Priest, H.; Childs-Sanford, S. Evaluation of the i-STAT portable clinical analyzer for measurement of ionized calcium and selected blood chemistry values in Asian elephants (Elephas maximus). J. Zoo Wildl. Med. 2017, 48, 319–327. [Google Scholar] [CrossRef]
- Trivedi, S.; Burnham, C.M.; Capobianco, C.M.; Boshoff, C.; Zheng, Y.; Wood-Pettiglio, J.; Ange-van Heugten, K.; Bissell, H.D.; Minter, L.J. Analysis of blood biochemistry of free ranging and human-managed southern white rhinoceros (Ceratotherium simum simum) using the i-STAT Alinity v. Vet. Med. Int. 2021, 2021, 2665956. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.-P.; Bourgès-Abella, N.; Geffré, A.; Concordet, D.; Trumel, C. The preanalytic phase in veterinary clinical pathology. Vet. Clin. Pathol. 2014, 44, 8–25. [Google Scholar] [CrossRef]
- Camus, M.S.; Flatland, B.; Freeman, K.P.; Cardona, J.A.C. ASVCP quality assurance guidelines: External quality assessment and comparative testing for reference and in-clinic laboratories. Vet. Clin. Pathol. 2015, 44, 477–492. [Google Scholar] [CrossRef]
- Gancz, A.Y.; Eshar, D.; Beaufrère, H. Paired biochemical analysis of pigmented plasma samples from zoo-kept American flamingos (Phoenicopterus ruber) using a point-of-care analyzer and a standard wet chemistry analyzer. J. Zoo Wildl. Med. 2019, 50, 619–626. [Google Scholar] [CrossRef]
- Anderson, N.L.; De La Cruz, S.E.W.; Brenn-White, M.; Frankfurter, G.; Ziccardi, M.H.; Martínez-López, B. Reference values and comparison of blood chemistry and plasma protein values between gold standard analyzers and four point-of-care devices in free-ranging canvasbacks (Aythya valisineria). J. Zoo Wildl. Med. 2022, 53, 302–318. [Google Scholar] [CrossRef]
- Hopper, K.J.; Cray, C. Evaluation of a portable clinical analyzer in cynomolgus macaques (Macaca fasicularis). J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 53–57. [Google Scholar]
- Atkins, A.; Jacobson, E.; Hernandez, J.; Bolten, A.B.; Lu, X. Use of a portable point-of-care (Vetscan Vs2) biochemical analyzer for measuring plasma biochemical levels in free-living loggerhead sea turtles (Caretta caretta). J. Zoo Wildl. Med. 2010, 41, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.S.; Haulena, M.; Grindem, C.B.; Gulland, F.M.D. Blood values of juvenile northern elephant seals (Mirounga angustirostris) obtained using a portable clinical analyzer. Vet. Clin. Pathol. 2002, 31, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Harrenstien, L.A.; Tornquist, S.J.; Miller-Morgan, T.J.; Fodness, B.G.; Clifford, K.E. Evaluation of a point-of-care blood analyzer and determination of reference ranges for blood paramters in rockfish. J. Am. Vet. Med. Assoc. 2005, 226, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMaggio, M.A.; Ohs, C.L.; Petty, B.D. Evaluation of a point-of-care blood analyzer for use in determination of select hematological indices in the Seminole killfish. N. Am. J. Aquac. 2010, 72, 261–268. [Google Scholar] [CrossRef]
- McCain, S.L.; Flatland, B.; Schumacher, J.P.; Clarke, E.O., III; Fry, M.M. Comparison of chemistry analytes between 2 portable, commercially available analyzers and a conventional laboratory analyzer in reptiles. Vet. Clin. Pathol. 2010, 39, 474–479. [Google Scholar] [CrossRef]
- Stoot, L.J.; Cairns, N.A.; Cull, F.; Taylor, J.J.; Jeffrey, J.D.; Morin, F.; Mandelman, J.W.; Clark, T.D.; Cooke, S.J. Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: A review. Conserv. Physiol. 2014, 2, cou011. [Google Scholar] [CrossRef]
- Element POC. Heska Corporation. Available online: https://www.heska.com/product/element-poc/ (accessed on 3 August 2022).
- i-STAT Alinity v. Zoetis Services LLC. Available online: https://www2.zoetisus.com/products/diagnostics/instruments/i-stat-alinity-v (accessed on 3 August 2022).
- Prihirunkit, K.; Lekcharoensuk, C.; Pisetpaisan, K. Comparison between manual and automated methods for determination of canine and feline hematocrit and hemoglobin concentration. Kasetsart J. (Nat. Sci.) 2008, 42, 655–659. [Google Scholar]
- Rettenmund, C.L.; Heatley, J.J.; Russell, K.E. Comparison of two analyzers to determine selected venous blood analytes of quaker parrots (Myiopsitta monachus). J. Zoo Wildl. Med. 2014, 45, 256–262. [Google Scholar] [CrossRef]
- Ferrando, A.; Bobadilla, I.G.; Bobadilla, M.S.; Palou, A.; Alemany, M. Comparative estimation of hematocrit and trapped plasma in the packed cell volume in man, rabbit and chicken blood. Comp. Biochem. Physiol. Part A Physiol. 1981, 70, 611–613. [Google Scholar] [CrossRef]
- van der Kolk, J.H.; van Leeuwen, J.P.T.M.; van den Belt, A.J.M.; van Schaik, R.H.N.; Schaftenaar, W. Subclinical hypocalcemia in captive Asian elephants (Elephas maximus). Vet. Rec. 2008, 162, 475–479. [Google Scholar] [CrossRef]
- van Sonsbeek, G.R.; van der Kolk, H.J.; van Leeuwen, J.P.T.M.; Everts, H.; Marais, J.; Schaftenaar, W. Effect of calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus) and African elephants (Loxodonta africana). J. Zoo Wildl. Med. 2013, 44, 529–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmanuelson, K. Neonatal care and hand rearing. In Biology, Medicine, and Surgery of Elephants, 1st ed.; Fowler, M.E., Mikota, S.K., Eds.; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2006; pp. 233–242. [Google Scholar] [CrossRef] [Green Version]
- Hermes, R.; Saragust, J.; Schaftenaar, W.; Göritz, F.; Schmitt, D.L.; Hildebrandt, T.B. Obstetrics in elephants. Theriogenology 2008, 70, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Jacobson, E.R.; Harvey, J.W.; Boyce, W. Hematology and serum chemical values for young African elephants (Loxodonta africana) with variations for sex and age. J. Zoo. Anim. Med. 1985, 16, 98–101. [Google Scholar] [CrossRef]
- Brown, I.R.F.; White, P.T. Elephant blood hematology and chemistry. Comp. Biochem. Physiol. 1980, 65, 1–12. [Google Scholar] [CrossRef]
- Steyrer, C.; Miller, M.; Hewlett, J.; Buss, P.; Hooijberg, E.H. Reference intervals for hematology and clinical chemistry for the African elephant (Loxodonta africana). Front. Vet. Sci. 2021, 8, 599387. [Google Scholar] [CrossRef]
- Wood, J.; Koutsos, E.; Kendall, C.J.; Minter, L.J.; Tollefson, T.; Ivor, E.; Ange-van Heugten, K. Circulating nutrients and hematological parameters in managed African elephants (Loxodonta africana) over a 1-year period. Zoo Biol. 2020, 39, 345–354. [Google Scholar] [CrossRef]
- AU5800 Series Clinical Chemistry Analyzers. Beckman Coulter, Inc. Available online: https://www.beckmancoulter.com/products/chemistry/au5800#/overview (accessed on 3 August 2022).
- Linnet, K. Necessary sample size for method comparison studies based on regression analysis. Clin. Chem. 1999, 45, 882–894. [Google Scholar] [CrossRef] [Green Version]
- Bruns, D.E.; Knowler, W.C. Stabilization of glucose in blood samples: Why it matters. Clin. Chem. 2009, 55, 850–852. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, R. Measurement of whole-blood potassium—Is it clinically safe? Clin. Chem. 2003, 49, 2105–2106. [Google Scholar] [CrossRef]
African Savannah Elephants | Southern White Rhinoceros | ||||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | Analyzer | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max |
Hematocrit (%) | PCV | 34.7 ± 0.56 | 35.0 | 33.5–35.8 | 33–36 | 34.8 ± 1.38 | 35.0 | 33.0–36.0 | 28–42 |
EPOC | 37.3 ± 1.41 | 37.0 | 35.5–38.5 | 33–43 | 36.1 ± 2.02 | 36.0 | 32.0–37.0 | 27–47 | |
Sodium (mmol/L) | VDL | 130.2 ± 0.79 a | 130.5 | 128.5–131.0 | 128–133 | 132.3 ± 0.58 | 132.0 | 131.0–134.0 | 130–135 |
EPOC | 129.0 ± 0.73 b | 128.5 | 128.0–129.8 | 127–132 | 133.4 ± 0.73 | 134.0 | 132.0–135.0 | 130–137 | |
Potassium (mmol/L) | VDL | 4.5 ± 0.14 a | 4.6 | 4.4–4.6 | 4.0–5.0 | 4.3 ± 0.07 | 4.4 | 4.2–4.4 | 4.0–4.6 |
EPOC | 4.3 ± 0.18 b | 4.3 | 4.1–4.5 | 3.6–4.9 | 4.3 ± 0.05 | 4.4 | 4.2–4.4 | 4.1–4.5 | |
Chloride (mmol/L) | VDL | 88.0 ± 1.03 | 87.0 | 87.0–89.3 | 85–92 | 91.7 ± 1.00 a | 91.0 | 91.0–93.0 | 86–97 |
EPOC | 90.2 ± 1.08 | 89.5 | 88.3–90.8 | 88–95 | 96.0 ± 1.20 b | 96.0 | 94.0–99.0 | 89–100 | |
Glucose (mg/dL) | VDL | 88.7 ± 6.96 a | 87.5 | 76.3–99.5 | 68–113 | 66.4 ± 4.21 a | 68.0 | 61.0–76.0 | 47–82 |
EPOC | 96.8 ± 7.23 b | 93.5 | 85.0–108.0 | 76–123 | 73.3 ± 4.28 b | 79.0 | 64.0–82.0 | 55–89 | |
Blood Urea Nitrogen (mg/dL) | VDL | 7.7 ± 0.33 a | 7.5 | 7.0–8.0 | 7–9 | 17.6 ± 0.93 a | 18.0 | 16.0–20.0 | 13–21 |
EPOC | 5.7 ± 0.61 b | 6.0 | 5.3–6.8 | 3–7 | 16.1 ± 0.99 b | 16.0 | 15.0–18.0 | 12–20 | |
Creatinine (mg/dL) | VDL | 1.7 ± 0.21 a | 1.6 | 1.4–1.8 | 1.3–2.7 | 1.2 ± 0.08 a | 1.3 | 1.0–1.3 | 0.9–1.5 |
EPOC | 2.1 ± 0.23 b | 1.9 | 1.8–2.3 | 1.7–3.1 | 1.5 ± 0.12 b | 1.6 | 1.1–1.8 | 1.0–1.9 |
African Savannah Elephants | Southern White Rhinoceros | ||||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | Analyzer | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max |
Hematocrit (%) | PCV | 34.7 ± 0.56 | 35.0 | 33.5–35.8 | 33–36 | 34.8 ± 1.38 | 35.0 | 33.0–36.0 | 28–42 |
i-STAT | 35.0 ± 0.86 | 35.0 | 34.0–36.0 | 32–38 | 35.3 ± 1.57 | 35.0 | 33.0–37.0 | 28–44 | |
Sodium (mmol/L) | VDL | 130.2 ± 0.79 | 130.5 | 128.5–131.0 | 128–133 | 132.3 ± 0.58 | 132.0 | 131.0–134.0 | 130–135 |
i-STAT | 129.2 ± 0.87 | 128.5 | 128.0–129.8 | 127–133 | 133.0 ± 0.67 | 133.0 | 132.0–134.0 | 129–136 | |
Potassium (mmol/L) | VDL | 4.5 ± 0.14 a | 4.6 | 4.4–4.6 | 4.0–5.0 | 4.3 ± 0.07 a | 4.4 | 4.2–4.4 | 4.0–4.6 |
i-STAT | 4.2 ± 0.15 b | 4.2 | 4.0–4.4 | 3.6–4.7 | 4.2 ± 0.06 b | 4.3 | 4.1–4.4 | 3.9–4.4 | |
Chloride (mmol/L) | VDL | 88.0 ± 1.03 | 87.0 | 87.0–89.3 | 85–92 | 91.7 ± 1.00 a | 91.0 | 91.0–93.0 | 86–97 |
i-STAT | 88.7 ± 1.09 | 88.5 | 86.5–89.8 | 86–93 | 94.3 ± 1.08 b | 94.0 | 93.0–97.0 | 88–98 | |
Glucose (mg/dL) | VDL | 88.7 ± 6.96 a | 87.5 | 76.3–99.5 | 68–113 | 66.4 ± 4.21 a | 68.0 | 61.0–76.0 | 47–82 |
i-STAT | 94.5 ± 6.32 b | 91.0 | 82.8–106.0 | 78–116 | 73.4 ± 4.62 b | 77.0 | 66.0–84.0 | 50–89 | |
Blood Urea Nitrogen (mg/dL) | VDL | 7.7 ± 0.33 a | 7.5 | 7.0–8.0 | 7–9 | 17.6 ± 0.93 | 18.0 | 16.0–20.0 | 13–21 |
i-STAT | 6.0 ± 0.37 b | 6.0 | 5.3–6.8 | 5–7 | 18.0 ± 1.00 | 19.0 | 15.0–20.0 | 14–22 | |
Creatinine (mg/dL) | VDL | 1.7 ± 0.21 a | 1.6 | 1.4–1.8 | 1.3–2.7 | 1.2 ± 0.08 a | 1.3 | 1.0–1.3 | 0.9–1.5 |
i-STAT | 2.0 ± 0.28 b | 1.8 | 1.6–2.1 | 1.5–3.3 | 1.3 ± 0.12 b | 1.5 | 1.0–1.6 | 0.9–1.8 |
African Savannah Elephants | Southern White Rhinoceros | ||||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | Analyzer | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max | Mean ± SEM | Median | IQR (Q1–Q3) | Min–Max |
Hematocrit (%) | i-STAT | 35.0 ± 0.86 | 35.0 | 34.0–36.0 | 32–38 | 35.3 ± 1.57 | 35.0 | 33.0–37.0 | 28–44 |
EPOC | 37.3 ± 1.41 | 37.0 | 35.5–38.5 | 33–43 | 36.1 ± 2.02 | 36.0 | 32.0–37.0 | 27–47 | |
Sodium (mmol/L) | i-STAT | 129.2 ± 0.87 | 128.5 | 128.0–129.8 | 127–133 | 133.0 ± 0.67 | 133.0 | 132.0–134.0 | 129–136 |
EPOC | 129.0 ± 0.73 | 128.5 | 128.0–129.8 | 127–132 | 133.4 ± 0.73 | 134.0 | 132.0–135.0 | 130–137 | |
Potassium (mmol/L) | i-STAT | 4.2 ± 0.15 | 4.2 | 4.0–4.4 | 3.6–4.7 | 4.2 ± 0.06 a | 4.3 | 4.1–4.4 | 3.9–4.4 |
EPOC | 4.3 ± 0.18 | 4.3 | 4.1–4.5 | 3.6–4.9 | 4.3 ± 0.05 b | 4.4 | 4.2–4.4 | 4.1–4.5 | |
Chloride (mmol/L) | i-STAT | 88.7 ± 1.09 | 88.5 | 86.5–89.8 | 86–93 | 94.3 ± 1.08 a | 94.0 | 93.0–97.0 | 88–98 |
EPOC | 90.2 ± 1.08 | 89.5 | 88.3–90.8 | 88–95 | 96.0 ± 1.20 b | 96.0 | 94.0–99.0 | 89–100 | |
Glucose (mg/dL) | i-STAT | 94.5 ± 6.32 | 91.0 | 82.8–106.0 | 78–116 | 73.4 ± 4.62 | 77.0 | 66.0–84.0 | 50–89 |
EPOC | 96.8 ± 7.23 | 93.5 | 85.0–108.0 | 76–123 | 73.3 ± 4.28 | 79.0 | 64.0–82.0 | 55–89 | |
Blood Urea Nitrogen (mg/dL) | i-STAT | 6.0 ± 0.37 | 6.0 | 5.3–6.8 | 5–7 | 18.0 ± 1.00 a | 19.0 | 15.0–20.0 | 14–22 |
EPOC | 5.7 ± 0.61 | 6.0 | 5.3–6.8 | 3–7 | 16.1 ± 0.99 b | 16.0 | 15.0–18.0 | 12–20 | |
Creatinine (mg/dL) | i-STAT | 2.0 ± 0.28 | 1.8 | 1.6–2.1 | 1.5–3.3 | 1.3 ± 0.12 a | 1.5 | 1.0–1.6 | 0.9–1.8 |
EPOC | 2.1 ± 0.23 | 1.9 | 1.8–2.3 | 1.7–3.1 | 1.5 ± 0.12 b | 1.6 | 1.1–1.8 | 1.0–1.9 | |
Ionized Calcium (mmol/L) | i-STAT | 1.29 ± 0.023 a | 1.30 | 1.25–1.33 | 1.21–1.35 | 1.54 ± 0.035 a | 1.59 | 1.47–1.62 | 1.35–1.64 |
EPOC | 1.22 ± 0.033 b | 1.21 | 1.18–1.28 | 1.10–1.32 | 1.47 ± 0.032 b | 1.47 | 1.40–1.53 | 1.34–1.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stratton, H.S.; Ange-van Heugten, K.D.; Minter, L.J. Comparison of Hematocrit and Biochemical Analytes among Two Point-of-Care Analyzers (EPOC and i-STAT Alinity v) and a Veterinary Diagnostic Laboratory in the African Savanna Elephant (Loxodonta africana) and the Southern White Rhinoceros (Ceratotherium simum simum). J. Zool. Bot. Gard. 2022, 3, 653-664. https://doi.org/10.3390/jzbg3040048
Stratton HS, Ange-van Heugten KD, Minter LJ. Comparison of Hematocrit and Biochemical Analytes among Two Point-of-Care Analyzers (EPOC and i-STAT Alinity v) and a Veterinary Diagnostic Laboratory in the African Savanna Elephant (Loxodonta africana) and the Southern White Rhinoceros (Ceratotherium simum simum). Journal of Zoological and Botanical Gardens. 2022; 3(4):653-664. https://doi.org/10.3390/jzbg3040048
Chicago/Turabian StyleStratton, Hayley S., Kimberly D. Ange-van Heugten, and Larry J. Minter. 2022. "Comparison of Hematocrit and Biochemical Analytes among Two Point-of-Care Analyzers (EPOC and i-STAT Alinity v) and a Veterinary Diagnostic Laboratory in the African Savanna Elephant (Loxodonta africana) and the Southern White Rhinoceros (Ceratotherium simum simum)" Journal of Zoological and Botanical Gardens 3, no. 4: 653-664. https://doi.org/10.3390/jzbg3040048
APA StyleStratton, H. S., Ange-van Heugten, K. D., & Minter, L. J. (2022). Comparison of Hematocrit and Biochemical Analytes among Two Point-of-Care Analyzers (EPOC and i-STAT Alinity v) and a Veterinary Diagnostic Laboratory in the African Savanna Elephant (Loxodonta africana) and the Southern White Rhinoceros (Ceratotherium simum simum). Journal of Zoological and Botanical Gardens, 3(4), 653-664. https://doi.org/10.3390/jzbg3040048