Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Details
2.2. Plant Details
2.3. Pollutant Monitoring
2.4. Plant Sampling
2.5. Photosynthetic Pigments
2.6. Enzymatic and Non-Enzymatic Antioxidants
2.7. Physio-Chemical Parameters
2.8. Resource Utilization
2.9. Statistical Analysis
3. Results
3.1. Pollutant Concentrations
3.2. Plant Responses to Pollutant Load
3.2.1. Photosynthetic Pigments
3.2.2. Enzymatic and Non-Enzymatic Antioxidants
3.2.3. Physio-Chemical Parameters
3.2.4. Resource Utilization Parameters
4. Discussion
4.1. Photosynthetic Pigments
4.2. Enzymatic and Non-Enzymatic Antioxidants
4.3. Physio-Chemical Parameters
4.4. Resource Utilization Strategy
4.5. Principal Component Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects 2018—Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Fuso Nerini, F.; Sovacool, B.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Tavoni, M.; Tomei, J.; Zerriffi, H.; Milligan, B. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2019, 2, 674–680. [Google Scholar] [CrossRef]
- WHO. Ambient Air Pollution—A Major Threat to Health and Climate; WHO: Geneva, Switzerland, 2021. Available online: https://www.who.int/airpollution/ambient/en/ (accessed on 20 January 2021).
- Chauhan, A. Photosynthetic pigment changes in some selected trees induced by automobile exhaust in Dehradun, Uttarakhand. N. Y. Sci. J. 2010, 3, 45–51. [Google Scholar]
- Rai, P.K.; Panda, L.L.; Chutia, B.M.; Singh, M.M. Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non industrial area (Aizawl) of India: An ecomanagement approach. Afr. J. Environ. Sci. Technol. 2013, 7, 944–948. [Google Scholar] [CrossRef]
- Alahabadi, A.; Ehrampoush, M.H.; Miri, M.; Aval, H.E.; Yousefzadeh, S.; Ghaffari, H.R.; Ahmadi, E.; Talebi, P.; Fathabadi, Z.A.; Babai, F.; et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 2017, 172, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Rao, D.N.; Agrawal, M.; Pandey, J.; Naryan, D. Air pollution tolerance index of plants. J. Environ. Manag. 1991, 32, 45–55. [Google Scholar] [CrossRef]
- Dadkhah-Aghdash, H.; Rasouli, M.; Rasouli, K.; Salimi, A. Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Sci. Rep. 2022, 12, 15398. [Google Scholar] [CrossRef]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar] [CrossRef]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Sharma, M.; Panwar, N.; Arora, P.; Luhach, J.; Chaudhry, S. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India. J. Environ. Biol. 2013, 34, 509–514. [Google Scholar]
- NAAQS. Guidelines for the Measurement of Ambient Air Pollutants Volume-I; Central Pollution Control Board, Ministry of Environment & Forests, Govt. of India: New Delhi, India, 2011.
- Mukherjee, A.; Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 2018, 152, 42–54. [Google Scholar] [CrossRef]
- West, P.W.; Gaeke, G.C. Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation. Anal. Chem. 1956, 28, 1816–1819. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Hochheiser, S. Continuous sampling and ultramicrodetermination of nitrogen dioxide in air. Anal. Chem. 1958, 30, 426–428. [Google Scholar] [CrossRef]
- Hangartner, M.; Kirchner, M.; Werner, H. Evaluation of passive methods for measuring ozone in the European Alps. Analyst 1996, 121, 1269–1272. [Google Scholar] [CrossRef]
- Maclachlan, S.; Zalik, S. Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can. J. Bot. 1963, 41, 1053–1062. [Google Scholar] [CrossRef]
- Duxbury, A.C.; Yentsch, C.S. Plankton Pigment Nomographs; Canadian Science Publishing: Ottawa, ON, Canada, 1956. [Google Scholar]
- Takshak, S.; Agrawal, S.B. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants. Plant Physiol. Biochem. 2015, 97, 124–138. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Pandey, A.; Jaiswal, D.; Agrawal, S.B. Ultraviolet-B mediated biochemical and metabolic responses of a medicinal plant Adhatoda vasica Nees. at different growth stages. J. Photochem. Photobiol. B Biol. 2021, 216, 112142. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.; Schwager, H. Air pollution and ascorbic acid. Eur. J. For. Pathol. 1977, 7, 338–350. [Google Scholar] [CrossRef]
- Bray, H.G.; Thorpe, W. Analysis of phenolic compounds of interest in metabolism. Methods Biochem. Anal. 1954, 1, 27–52. [Google Scholar] [CrossRef]
- Gupta, A.; Agrawal, S.B.; Agrawal, M. Evaluation of Toxicity of Tropospheric Ozone on Tomato (Solanum lycopersicum L.) Cultivars: ROS Production, Defense Strategies and Intraspecific Sensitivity. J. Plant Growth Regul. 2022, 1–17. [Google Scholar] [CrossRef]
- Flint, S.D.; Jordan, P.W.; Caldwell, M.M. Plant protective response to enhanced UV-B radiation under field conditions: Leaf optical properties and photosynthesis. Photochem. Photobiol. 1985, 41, 95–99. [Google Scholar] [CrossRef]
- Gupta, N.K.; Agarwal, S.; Agarwal, V.P.; Nathawat, N.S.; Gupta, S.; Singh, G. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol. Plant. 2013, 35, 1837–1842. [Google Scholar] [CrossRef]
- Smart, R.E.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Air Quality Guidelines Global Update Published by World Health Organization on the Internet; WHO: Geneva, Switzerland, 2005.
- CPCB. National Ambient Air Quality Standards; Central Pollution Control Board: New Delhi, India, 2009; Available online: http://cpcb.nic.in/National_Ambient_Air_Quality_Standards.php (accessed on 11 April 2017).
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Ji, Y.; Gao, J. Climate factors determine the utilization strategy of forest plant resources at large scales. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, B.; Roy, L.B.; Shekhar, S.; Singh, R.K. Tree responses to foliar dust deposition and gradient of air pollution around opencast coal mines of Jharia coalfield, India: Gas exchange, antioxidative potential and tolerance level. Environ. Sci. Pollut. Res. 2021, 28, 8637–8651. [Google Scholar] [CrossRef]
- Orru, H.; Ebi, K.L.; Forsberg, B. The interplay of climate change and air pollution on health. Curr. Environ. Health Rep. 2017, 4, 504–513. [Google Scholar] [CrossRef]
- Wei, S.Z.; Yuan, H.J.; Zan, Y.L. Research on the SO2 resistance in three kinds of foliage plants. Chin. Agric. Sci. Bull. 2014, 30, 152–156, (In Chinese with English abstract). [Google Scholar]
- Uka, U.N.; Belford, E.J.; Hogarh, J.N. Roadside air pollution in a tropical city: Physiological and biochemical response from trees. Bull. Natl. Res. Cent. 2019, 43, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Kulshrestha, U. Biochemical effects of air pollutants on plants. In Plant Responses to Air Pollution; Springer: Berlin/Heidelberg, Germany, 2016; Volume 59. [Google Scholar] [CrossRef]
- Jyothi, S.J.; Jaya, D.S. Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvananthapuram, Kerala. J. Environ. Biol. 2010, 31, 379–386. [Google Scholar]
- Prusty, B.A.K.; Mishra, P.C.; Azeez, P.A. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf. 2005, 60, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, E.; Hoshika, Y.; Dusart, N.; Cotrozzi, L.; Gérard, J.; Nali, C.; Vaultier, M.N.; Jolivet, Y.; Lorenzini, G.; Paoletti, E. Antioxidative responses of three oak species under ozone and water stress conditions. Sci. Total Environ. 2019, 647, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Anjum, S.A.; Farooq, M.; Xie, X.Y.; Liu, X.J.; Ijaz, M.F. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic. 2012, 140, 66–73. [Google Scholar] [CrossRef]
- Davies, K.J. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB life 2000, 50, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Ahmad, P. Catalase: A versatile antioxidant in plants. In Oxidative Damage to Plants; Academic Press: Cambridge, MA, USA, 2014; pp. 131–148. [Google Scholar] [CrossRef]
- Gapińska, M.; Skłodowska, M.; Gabara, B. Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant. 2008, 30, 11–18. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Gautam, M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 2007, 28, 127. [Google Scholar]
- Tanaka, K.; Otsubo, T.; Kondo, N. Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol. 1982, 23, 1009–1018. [Google Scholar] [CrossRef]
- Chaudhary, C.S.; Rao, D.N. A study of some factors in plants controlling their susceptibility to SO2 pollution. Proc. Indian Natl. Sci. Acad. USA 1977, 43, 236–241. [Google Scholar]
- Nayak, R.; Biswal, D.; Sett, R. Biochemical changes in some deciduous tree species around Talcher thermal power station, Odisha, India. J. Environ. Biol. 2013, 34, 521. [Google Scholar]
- Kováčik, J.; Bačkor, M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant Soil 2007, 297, 255–265. [Google Scholar] [CrossRef]
- Massad, T.J.; Trumbore, S.E.; Ganbat, G.; Reichelt, M.; Unsicker, S.; Boeckler, A.; Gleixner, G.; Gershenzon, J.; Ruehlow, S. An optimal defense strategy for phenolic glycoside production in Populus trichocarpa–isotope labeling demonstrates secondary metabolite production in growing leaves. New Phytol. 2014, 203, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Chauhan, A.; Joshi, P.C. Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist 2009, 29, 398–404. [Google Scholar] [CrossRef]
- Masuch, G.; Kicinski, H.G.; Kettrup, A.; Boos, K.S. Single and Combined Effects of Continuous and Discontinuous O3 and SO2 Immission on Norway Spruce Needles: I. Histological and Cytological Changes. Int. J. Environ. Anal. Chem. 1988, 32, 187–212. [Google Scholar] [CrossRef]
- Govindaraju, M.; Ganeshkumar, R.S.; Muthukumaran, V.R.; Visvanathan, P. Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development. Environ. Sci. Pollut. Res. 2012, 19, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Vaieretti, M.V.; Diaz, S.; Vile, D.; Garnier, E. Two measurement methods of leaf dry matter content produce similar results in a broad range of species. Ann. Bot. 2007, 99, 955–958. [Google Scholar] [CrossRef]
Scientific Name (Common) | Family | Nature | Canopy Structure | Leaf Type |
---|---|---|---|---|
Mangifera indica L. (Mango) | Anacardiaceae | Evergreen | Round/Spreading | Simple |
Psidium guajava L. (Guava) | Myrtaceae | Evergreen | Oval | Simple |
Ficus religiosa L. (Peepal) | Moraceae | Deciduous | Spreading | Simple |
Azadirachta indica A. Juss. (Neem) | Meliaceae | Evergreen | Round/Oval | Compound (Pinnate) |
Dalbergia sissoo Roxb. (Shisham) | Papilionaceae | Deciduous | Oval | Compound (Pinnate) |
Bougainvillea spectabilis Willd. (Bougainvillea) | Nyctaginaceae | - | Round | Simple |
Cascabela thevetia L. (Pela Kaner) | Apocynaceae | - | Slender | Needle |
Air Pollutants | Annual Permissible Limit | Reference Site (B.H.U) | Commercial Site (B.R.S) | Industrial Site (R.I.A) | ||||
---|---|---|---|---|---|---|---|---|
WHO | NAAQS | Summer | Winter | Summer | Winter | Summer | Winter | |
SO2 | 40 | 50 | 13.4 ± 1.7 | 26.3 ± 1.7 | 21.3 ± 5.7 | 28.7 ± 2.9 | 43.7 ± 16.2 | 34.2 ± 2.1 |
NO2 | 10 | 40 | 19.4 ± 4.0 | 21.4 ± 2.5 | 49.1 ± 5.6 | 47.8 ± 9.8 | 89.7 ± 8.5 | 86.2 ± 6.3 |
PM10 | 15 | 60 | 90.3 ± 18.3 | 89.1 ± 10.7 | 125.6 ± 17.5 | 109.9 ± 23.2 | 349.3 ± 32.8 | 279.1 ± 28.5 |
O3 | 60 * | 100 * | 5.4 ± 4.1 | 38.2 ± 12.3 | 40.3 ± 8.2 | 49.3 ± 11.5 | 16.7 ± 6.4 | 26.9 ± 8.7 |
Parameters | Site | Season | Plant | Site X Season | Season X Plant | Site X Plant | Site X Season X Plant |
---|---|---|---|---|---|---|---|
Total chlorophyll | 874.977 *** | 6.814 * | 296.623 *** | 1.697 ns | 7.438 *** | 87.575 *** | 6.293 *** |
Chlorophyll a/b | 76.897 *** | 17.453 *** | 93.455 *** | 21.514 *** | 20.280 *** | 14.326 *** | 8.443 *** |
Carotenoids | 9.740 *** | 12.415 *** | 157.703 *** | 3.373 * | 2.841 * | 22.627 *** | 2.819 ** |
Catalase | 66.024 *** | 34.300 *** | 406.571 *** | 72.877 *** | 129.395 *** | 24.702 *** | 29.424 *** |
Superoxide dismutase | 884.284 *** | 3543.584 *** | 414.321 *** | 745.677 *** | 462.340 *** | 121.266 *** | 135.666 *** |
Ascorbic acid | 1247.364 *** | 175.776 *** | 1236.303 *** | 2.641 ns | 156.265 *** | 64.076 *** | 12.674 *** |
Flavonoid | 479.594 *** | 417.729 *** | 236.638 *** | 10.900 *** | 2.777 * | 9.244 *** | 1.035 ns |
Anthocyanin | 706.422 *** | 46.960 *** | 347.983 *** | 3.122 * | 10.765 *** | 164.968 *** | 8.315 *** |
Phenol | 679.707 *** | 615.153 *** | 143.698 *** | 10.370 *** | 42.923 *** | 32.523 *** | 15.624 *** |
pH | 540.913 *** | 12.317 *** | 62.691 *** | 0.943 ns | 10.619 *** | 8.448 *** | 1.154 ns |
MSI | 148.583 *** | 59.657 *** | 151.364 *** | 0.226 ns | 43.131 *** | 16.763 *** | 15.066 *** |
RWC | 86.208 *** | 59.641 *** | 41.035 *** | 7.914 ** | 7.502 *** | 36.767 *** | 14.278 *** |
NWC | 0.991 *** | 58.957 *** | 710.270 *** | 6.174 ** | 3.427 ** | 43.138 *** | 2.274 ** |
Leaf area | 123.033 *** | 22.736 *** | 4759.556 *** | 2.701 ns | 3.351 ** | 44.043 *** | 4.604 *** |
Leaf mass per area | 135.229 *** | 37.380 *** | 1088.329 *** | 3.165 ns | 7.546 *** | 23.101 *** | 2.575 ** |
Lead dry matter content | 329.191 *** | 24.251 *** | 331.804 *** | 13.002 *** | 8.560 *** | 45.970 *** | 13.212 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, H.; Singh, P.; Agrawal, S.B.; Agrawal, M. Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains. Gases 2023, 3, 57-76. https://doi.org/10.3390/gases3020004
Singh H, Singh P, Agrawal SB, Agrawal M. Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains. Gases. 2023; 3(2):57-76. https://doi.org/10.3390/gases3020004
Chicago/Turabian StyleSingh, Harshita, Pallavi Singh, Shashi Bhushan Agrawal, and Madhoolika Agrawal. 2023. "Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains" Gases 3, no. 2: 57-76. https://doi.org/10.3390/gases3020004
APA StyleSingh, H., Singh, P., Agrawal, S. B., & Agrawal, M. (2023). Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains. Gases, 3(2), 57-76. https://doi.org/10.3390/gases3020004