The Immunomodulatory Effects of Statins on Macrophages
Abstract
:1. Introduction
1.1. Statins Are the Most Widely Prescribed Medications for the Prevention of Cardiovascular Disease
1.2. The Central Role of Macrophages in Inflammation and CVD
1.3. Statins Have Immunomodulatory Effects
2. In Vitro Evidence Demonstrating the Direct Effects of Statins on Macrophages
2.1. Statins Modulate TLR Inflammatory Signalling Pathways
2.1.1. Anti-Inflammatory Modulation of TLR Signalling Pathways
2.1.2. Pro-Inflammatory Modulation of TLR Signalling Pathways
2.2. Statins Modulate IFN-γR Inflammatory Signalling Pathways
2.2.1. Anti-Inflammatory Modulation of IFN-γR Signalling Pathways
2.2.2. Pro-Inflammatory Modulation of IFN-γR Signalling Pathways
2.3. Statins Play Roles in Macrophage Differentiation
3. In Vivo Studies Investigating the Effects of Statins on Macrophages
4. Clinical Evidence for Inflammatory Effects of Statins on Macrophages
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 21 February 2022).
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, L.; Gini, E.; Baci, D.; Tremolati, M.; Fanuli, M.; Bassani, B.; Farronato, G.; Bruno, A.; Mortara, L. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J. Immunol. Res. 2018, 2018, 8917804. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, P.; Wickramasinghe, K.; Wilkins, E.; Townsend, N. Trends in the Epidemiology of Cardiovascular Disease in the UK. Heart 2016, 102, 1945–1952. [Google Scholar] [CrossRef]
- Mensah, G.A.; Wei, G.S.; Sorlie, P.D.; Fine, L.J.; Rosenberg, Y.; Kaufmann, P.G.; Mussolino, M.E.; Hsu, L.L.; Addou, E.; Engelgau, M.M.; et al. Decline in Cardiovascular Mortality: Possible Causes and Implications. Circ. Res. 2017, 120, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef]
- How Statin Drugs Protect the Heart—Johns Hopkins Medicine. Available online: https://www.hopkinsmedicine.org/health/wellness-and-prevention/how-statin-drugs-protect-the-heart (accessed on 21 February 2022).
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between Lowering LDL-C and Cardiovascular Risk Reduction among Different Therapeutic Interventions: A Systematic Review and Meta-Analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Reith, C.; Emberson, J.; Armitage, J.; Baigent, C.; Blackwell, L.; Blumenthal, R.; Danesh, J.; Smith, G.D.; DeMets, D.; et al. Interpretation of the Evidence for the Efficacy and Safety of Statin Therapy. Lancet 2016, 388, 2532–2561. [Google Scholar] [CrossRef] [Green Version]
- Lusis, A.J.; Mar, R.; Pajukanta, P. Genetics of Atherosclerosis. Annu. Rev. Genom. Hum. Genet. 2004, 5, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Mattiuzzi, C.; Cervellin, G. Statins Popularity: A Global Picture. Br. J. Clin. Pharmacol. 2019, 85, 1614–1615. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nichol, M.B.; Yan, B.P.Y.; Wu, J.; Tomlinson, B.; Lee, V.W.Y. Descriptive Analysis of Real-World Medication Use Pattern of Statins and Antiplatelet Agents among Patients with Acute Coronary Syndrome in Hong Kong and the USA. BMJ Open 2019, 9, e024937. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Liao, J.K. Pleiotropic Effects of Statins—Basic Research and Clinical Perspectives. Circ. J. 2010, 74, 818–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Climent, E.; Benaiges, D.; Pedro-Botet, J. Hydrophilic or Lipophilic Statins? Front. Cardiovasc. Med. 2021, 8, 687585. [Google Scholar] [CrossRef] [PubMed]
- Schachter, M. Chemical, Pharmacokinetic and Pharmacodynamic Properties of Statins: An Update. Fundam. Clin. Pharmacol. 2005, 19, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Moroni, F.; Ammirati, E.; Norata, G.D.; Magnoni, M.; Camici, P.G. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019, 2019, 7434376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in Atherosclerosis: A Dynamic Balance. Nat. Rev. Immunol. 2013, 13, 709. [Google Scholar] [CrossRef]
- Beck-Joseph, J.; Lehoux, S. Molecular Interactions Between Vascular Smooth Muscle Cells and Macrophages in Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 737934. [Google Scholar] [CrossRef]
- Anlamlert, W.; Lenbury, Y.; Bell, J. Modeling Fibrous Cap Formation in Atherosclerotic Plaque Development: Stability and Oscillatory Behavior. Adv. Differ. Equ. 2017, 2017, 195. [Google Scholar] [CrossRef] [Green Version]
- Pfizer Ireland Pharmaceuticals. Lipitor® (Atorvastatin Calcium) Highlights of Prescribing Information. 2009. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s056lbl.pdf (accessed on 23 March 2022).
- Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying Effect of Statins on Low Density Lipoprotein Cholesterol, Ischaemic Heart Disease, and Stroke: Systematic Review and Meta-Analysis. BMJ 2003, 326, 1423. [Google Scholar] [CrossRef] [Green Version]
- Duerden, M.; O’Flynn, N.; Qureshi, N. Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification Clinical Guideline. Br. J. Gen. Pract. 2015, 65, 378–380. [Google Scholar] [CrossRef]
- Bayer Corporation. BAYCOL ® (Cerivastatin Sodium) Highlights of Prescribing Information. 2000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/20-740S008_Baycol_prntlbl.pdf (accessed on 23 March 2022).
- Adams, S.P.; Tiellet, N.; Alaeiilkhchi, N.; Wright, J.M.; Group, C.H. Cerivastatin for Lowering Lipids. Cochrane Database Syst. Rev. 2020, 1, CD012501. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals Corporation. Lescol® XL (Fluvastatin Sodium) Highlights of Prescribing Information. 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021192s019lbl.pdf (accessed on 23 March 2022).
- Merck Sharp & Dohme Corp. MEVACOR® (Lovastatin) Highlights of Prescribing Information. 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019643s085lbl.pdf (accessed on 23 March 2022).
- Roy, M.; Kung, H.-J.; Ghosh, P.M. Statins and Prostate Cancer: Role of Cholesterol Inhibition vs. Prevention of Small GTP-Binding Proteins. Am. J. Cancer Res. 2011, 1, 542. [Google Scholar] [PubMed]
- Kowa Pharmaceuticals America Inc. LIVALO® (Pitavastatin) Highlights of Prescribing Information. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022363s015lbl.pdf (accessed on 23 March 2022).
- Adams, S.P.; Alaeiilkhchi, N.; Wright, J.M. Pitavastatin for Lowering Lipids. Cochrane Database Syst. Rev. 2020, 6, CD012735. [Google Scholar] [CrossRef] [PubMed]
- Bristol-Myers Squibb Company. PRAVACHOL® (Pravastatin Sodium) Highlights of Prescribing Information. 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/019898Orig1s061.pdf (accessed on 23 March 2022).
- AstraZeneca. CRESTOR (Rosuvastatin Calcium) Highlights of Prescribing Information. 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf (accessed on 23 March 2022).
- Marck & Co., Inc. ZOCOR (Simvastatin) Highlights of Prescribing Information. 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/019766s078lbl.pdf (accessed on 23 March 2022).
- Furberg, C.D.; Pitt, B. Withdrawal of Cerivastatin from the World Market. Curr. Control. Trials Cardiovasc. Med. 2001, 2, 205. [Google Scholar] [CrossRef] [PubMed]
- Endo, A. The Origin of the Statins. Atheroscler. Suppl. 2004, 5, 125–130. [Google Scholar] [CrossRef]
- Mosser, D.M.; Hamidzadeh, K.; Goncalves, R. Macrophages and the Maintenance of Homeostasis. Cell. Mol. Immunol. 2020, 18, 579–587. [Google Scholar] [CrossRef]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage Plasticity, Polarization, and Function in Health and Disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Sig. Transduct Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Bode, J.G.; Ehlting, C.; Häussinger, D. The Macrophage Response towards LPS and Its Control through the P38MAPK–STAT3 Axis. Cell. Signal. 2012, 24, 1185–1194. [Google Scholar] [CrossRef]
- Yamamoto, M.; Sato, S.; Hemmi, H.; Hoshino, K.; Kaisho, T.; Sanjo, H.; Takeuchi, O.; Sugiyama, M.; Okabe, M.; Takeda, K.; et al. Role of Adaptor TRIF in the MyD88-Independent Toll-like Receptor Signaling Pathway. Science 2003, 301, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Von Knethen, A.; Callsen, D.; Brüne, B. NF-KappaB and AP-1 Activation by Nitric Oxide Attenuated Apoptotic Cell Death in RAW 264.7 Macrophages. Mol. Biol. Cell 1999, 10, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Bonecchi, R.; Garlanda, C.; Mantovani, A.; Riva, F. Cytokine Decoy and Scavenger Receptors as Key Regulators of Immunity and Inflammation. Cytokine 2016, 87, 37. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Vannella, K.M. Review Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosser, D.M.; Edwards, J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Chávez-Galán, L.; Olleros, M.L.; Vesin, D.; Garcia, I. Much More than M1 and M2 Macrophages, There Are Also CD169+ and TCR+ Macrophages. Front. Immunol. 2015, 6, 263. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Swirski, F.K. Abandoning M1/M2 for a Network Model of Macrophage Function. Circ. Res. 2016, 119, 414. [Google Scholar] [CrossRef] [Green Version]
- Stöger, J.L.; Gijbels, M.J.J.; van der Velden, S.; Manca, M.; van der Loos, C.M.; Biessen, E.A.L.; Daemen, M.J.A.P.; Lutgens, E.; de Winther, M.P.J. Distribution of Macrophage Polarization Markers in Human Atherosclerosis. Atherosclerosis 2012, 225, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Chinetti-Gbaguidi, G.; Baron, M.; Bouhlel, M.A.; Vanhoutte, J.; Copin, C.; Sebti, Y.; Derudas, B.; Mayi, T.; Bories, G.; Tailleux, A.; et al. Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPARγ and LXRα Pathways. Circ. Res. 2011, 108, 985–995. [Google Scholar] [CrossRef]
- Feig, J.E.; Parathath, S.; Rong, J.X.; Mick, S.L.; Vengrenyuk, Y.; Grauer, L.; Young, S.G.; Fisher, E.A. Reversal of Hyperlipidemia with a Genetic Switch Favorably Affects the Content and Inflammatory State of Macrophages in Atherosclerotic Plaques. Circulation 2011, 123, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Hewing, B.; Parathath, S.; Mai, C.K.; Fiel, M.I.; Guo, L.; Fisher, E.A. Rapid Regression of Atherosclerosis with MTP Inhibitor Treatment. Atherosclerosis 2013, 227, 125–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; Van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; et al. Antagonism of MiR-33 in Mice Promotes Reverse Cholesterol Transport and Regression of Atherosclerosis. J. Clin. Investig. 2011, 121, 2921–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varnava, A.M.; Mills, P.G.; Davies, M.J. Relationship Between Coronary Artery Remodeling and Plaque Vulnerability. Circulation 2002, 105, 939–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poh, A.R.; Ernst, M. Targeting Macrophages in Cancer: From Bench to Bedside. Front. Oncol. 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.T.; Gao, F.; Gu, K.; Chen, D.K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front. Immunol. 2019, 10, 1140. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Marion, T.N.; Cao, X.; Wang, W.; Cao, Y. Park 7: A Novel Therapeutic Target for Macrophages in Sepsis-Induced Immunosuppression. Front. Immunol. 2018, 9, 2632. [Google Scholar] [CrossRef] [Green Version]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229. [Google Scholar] [CrossRef] [Green Version]
- Blake, G.J.; Rifai, N.; Buring, J.E.; Ridker, P.M. Blood Pressure, C-Reactive Protein, and Risk of Future Cardiovascular Events. Circulation 2003, 108, 2993–2999. [Google Scholar] [CrossRef] [Green Version]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.G.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive Protein, a Sensitive Marker of Inflammation, Predicts Future Risk of Coronary Heart Disease in Initially Healthy Middle-Aged Men. Circulation 1999, 99, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Mendall, M.A.; Strachan, D.P.; Butland, B.K.; Ballam, L.; Morris, J.; Sweetnam, P.M.; Elwood, P.C. C-Reactive Protein: Relation to Total Mortality, Cardiovascular Mortality and Cardiovascular Risk Factors in Men. Eur. Heart J. 2000, 21, 1584–1590. [Google Scholar] [CrossRef]
- Ridker, P.M.; Hennekens, C.; Buring, J.E.; Rifai, N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Stampfer, M.J.; Rifai, N. Novel Risk Factors for Systemic Atherosclerosis: A Comparison of C-Reactive Protein, Fibrinogen, Homocysteine, Lipoprotein(a), and Standard Cholesterol Screening as Predictors of Peripheral Arterial Disease. JAMA 2001, 285, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Tracy, R.P.; Lemaitre, R.N.; Psaty, B.M.; Ives, D.G.; Evans, R.W.; Cushman, M.; Meilahn, E.N.; Kuller, L.H. Relationship of C-Reactive Protein to Risk of Cardiovascular Disease in the Elderly. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. C-Reactive Protein Levels and Outcomes after Statin Therapy. N. Engl. J. Med. 2005, 352, 20–28. [Google Scholar] [CrossRef]
- Plenge, J.K.; Hernandez, T.L.; Weil, K.M.; Poirier, P.; Grunwald, G.K.; Marcovina, S.M.; Eckel, R.H. Simvastatin Lowers C-Reactive Protein within 14 Days: An Effect Independent of Low-Density Lipoprotein Cholesterol Reduction. Circulation 2002, 106, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.A.; Danielson, E.; Rifai, N.; Ridker, P.M. Effect of Statin Therapy on C-Reactive Protein Levels: The Pravastatin Inflammation/CRP Evaluation (PRINCE): A Randomized Trial and Cohort Study. JAMA 2001, 286, 64–70. [Google Scholar] [CrossRef]
- Szyguła-Jurkiewicz, B.; Szczurek, W.; Zembala, M. The Role of Statins in Patients after Heart Transplantation. Kardiochir. Torakochirurgia Pol. 2015, 12, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Emami, H.; Vucic, E.; Singh, P.; Vijayakumar, J.; Fifer, K.M.; Alon, A.; Shankar, S.S.; Farkouh, M.; Rudd, J.H.F.; et al. High-Dose Atorvastatin Reduces Periodontal Inflammation: A Novel Pleiotropic Effect of Statins. J. Am. Coll. Cardiol. 2013, 62, 2382–2391. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, S.R.; Lu, L.; Rai, S.K.; Seeger, J.D.; Zhang, Y.; Choi, H.K. Statin Use and Mortality in Rheumatoid Arthritis: A General Population-Based Cohort Study. Ann. Rheum. Dis. 2016, 75, 1315–1320. [Google Scholar] [CrossRef]
- McCarey, D.W.; McInnes, I.B.; Madhok, R.; Hampson, R.; Scherbakov, O.; Ford, I.; Capell, H.A.; Sattar, N. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2004, 363, 2015–2021. [Google Scholar] [CrossRef]
- Holstein, S.A.; Hohl, R.J. Isoprenoids: Remarkable Diversity of Form and Function. Lipids 2004, 39, 293–309. [Google Scholar] [CrossRef]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-Binding Proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef] [PubMed]
- Van Aelst, L.; D’Souza-Schorey, C. Rho GTPases and Signaling Networks. Genes Dev. 1997, 11, 2295–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Peng, W.; Xu, Y. Small GTPase and Regulation of Inflammation Response in Atherogenesis. J. Cardiovasc. Pharmacol. 2013, 62, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Prashar, A.; Schnettger, L.; Bernard, E.M.; Gutierrez, M.G. Rab GTPases in Immunity and Inflammation. Front. Cell. Infect. Microbiol. 2017, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Knaus, U.G. Rho GTPase Signaling in Inflammation and Transformation. Immunol. Res. 2000, 21, 103–109. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, T.Y.; Zhao, M.F.; Li, C.J. The Balance of Protein Farnesylation and Geranylgeranylation during the Progression of Nonalcoholic Fatty Liver Disease. J. Biol. Chem. 2020, 295, 5152–5162. [Google Scholar] [CrossRef] [Green Version]
- Politiek, F.A.; Waterham, H.R. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front. Immunol. 2021, 12, 724991. [Google Scholar] [CrossRef]
- Kwak, B.; Mulhaupt, F.; Myit, S.; Mach, F. Statins as a Newly Recognized Type of Immunomodulator. Nat. Med. 2000, 6, 1399–1402. [Google Scholar] [CrossRef]
- Youssef, S.; Stüve, O.; Patarroyo, J.O.; Ruiz, P.J.; Radosevich, J.L.; Mi Hur, E.; Bravo, M.; Mitchell, D.J.; Sobel, R.A.; Stelnman, L.; et al. The HMG-CoA Reductase Inhibitor, Atorvastatin, Promotes a Th2 Bias and Reverses Paralysis in Central Nervous System Autoimmune Disease. Nature 2002, 420, 78–84. [Google Scholar] [CrossRef]
- Huang, K.-C.; Chen, C.-W.; Chen, J.-C.; Lin, W.-W. HMG-CoA Reductase Inhibitors Inhibit Inducible Nitric Oxide Synthase Gene Expression in Macrophages. J. Biomed. Sci. 2003, 10, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Helmers, A.J.; Gowda, D.C.; Kain, K.C.; Liles, W.C. Statins Fail to Improve Outcome in Experimental Cerebral Malaria and Potentiate Toll-Like Receptor-Mediated Cytokine Production by Murine Macrophages. Am. J. Trop. Med. Hyg. 2009, 81, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Park, E.J.; Kim, E.K.; Jin, J.; Kim, J.S.; Shin, I.J.; Kim, B.Y.; Lee, H.; Kim, D.E. Atorvastatin and Simvastatin, but Not Pravastatin, Up-Regulate LPS-Induced MMP-9 Expression in Macrophages by Regulating Phosphorylation of ERK and CREB. Cell. Physiol. Biochem. 2012, 30, 499–511. [Google Scholar] [CrossRef]
- Shao, Q.; Shen, L.H.; Hu, L.A.; Pu, J.; Jing, Q.; He, B. Atorvastatin Suppresses Inflammatory Response Induced by OxLDL through Inhibition of ERK Phosphorylation, IκBα Degradation, and COX-2 Expression in Murine Macrophages. J. Cell. Biochem. 2012, 113, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Henriksbo, B.D.; Lau, T.C.; Cavallari, J.F.; Denou, E.; Chi, W.; Lally, J.S.; Crane, J.D.; Duggan, B.M.; Foley, K.P.; Fullerton, M.D.; et al. Fluvastatin Causes NLRP3 Inflammasome-Mediated Adipose Insulin Resistance. Diabetes 2014, 63, 3742–3747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, O.; Zhang, J. Atorvastatin Promotes Human Monocyte Differentiation toward Alternative M2 Macrophages through P38 Mitogen-Activated Protein Kinase-Dependent Peroxisome Proliferator-Activated Receptor γ Activation. Int. Immunopharmacol. 2015, 26, 58–64. [Google Scholar] [CrossRef]
- Han, F.; Xiao, Q.Q.; Peng, S.; Che, X.Y.; Jiang, L.S.; Shao, Q.; He, B. Atorvastatin Ameliorates LPS-Induced Inflammatory Response by Autophagy via AKT/MTOR Signaling Pathway. J. Cell. Biochem. 2018, 119, 1604–1615. [Google Scholar] [CrossRef]
- Hohensinner, P.J.; Baumgartner, J.; Ebenbauer, B.; Thaler, B.; Fischer, M.B.; Huber, K.; Speidl, W.S.; Wojta, J. Statin Treatment Reduces Matrix Degradation Capacity of Proinflammatory Polarized Macrophages. Vascul. Pharmacol. 2018, 110, 49–54. [Google Scholar] [CrossRef]
- Akula, M.K.; Ibrahim, M.X.; Ivarsson, E.G.; Khan, O.M.; Kumar, I.T.; Erlandsson, M.; Karlsson, C.; Xu, X.; Brisslert, M.; Wang, D.; et al. Protein Prenylation Restrains Innate Immunity by Inhibiting Rac1 Effector Interactions. Nat. Commun. 2019, 10, 3975. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Alabdullah, M.; Großmann, J.; Spieler, F.; Abdosh, R.; Lutz, V.; Kalies, K.; Knöpp, K.; Rieckmann, M.; Koch, S.; et al. The Differential Statin Effect on Cytokine Production of Monocytes or Macrophages Is Mediated by Differential Geranylgeranylation-Dependent Rac1 Activation. Cell Death Dis. 2019, 10, 880. [Google Scholar] [CrossRef] [Green Version]
- Gasbarrino, K.; Hafiane, A.; Zheng, H.; Daskalopoulou, S.S. Intensive Statin Therapy Compromises the Adiponectin-AdipoR Pathway in the Human Monocyte-Macrophage Lineage. Stroke 2019, 50, 3609–3617. [Google Scholar] [CrossRef] [PubMed]
- Healy, A.; Berus, J.M.; Christensen, J.L.; Lee, C.; Mantsounga, C.; Dong, W.; Watts, J.P.; Assali, M.; Ceneri, N.; Nilson, R.; et al. Statins Disrupt Macrophage Rac1 Regulation Leading to Increased Atherosclerotic Plaque Calcification. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 714–732. [Google Scholar] [CrossRef] [PubMed]
- Henriksbo, B.D.; Tamrakar, A.K.; Phulka, J.S.; Barra, N.G.; Schertzer, J.D. Statins Activate the NLRP3 Inflammasome and Impair Insulin Signaling via P38 and MTOR. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E110–E116. [Google Scholar] [CrossRef]
- Cui, H.; Soga, K.; Tamehiro, N.; Adachi, R.; Hachisuka, A.; Hirose, A.; Kondo, K.; Nishimaki-Mogami, T. Statins Repress Needle-like Carbon Nanotube- or Cholesterol Crystal-Stimulated IL-1β Production by Inhibiting the Uptake of Crystals by Macrophages. Biochem. Pharmacol. 2021, 188, 114580. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, M.; Rabkin, E.; Sugiyama, S.; Voglic, S.J.; Fukumoto, Y.; Furukawa, Y.; Shiomi, M.; Schoen, F.J.; Libby, P. An HMG-CoA Reductase Inhibitor, Cerivastatin, Suppresses Growth of Macrophages Expressing Matrix Metalloproteinases and Tissue Factor in Vivo and in Vitro. Circulation 2001, 103, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, Z.; Chase, A.J.; Newby, A.C. Statins Inhibit Secretion of Metalloproteinases-1, -2, -3, and -9 from Vascular Smooth Muscle Cells and Macrophages. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 769–775. [Google Scholar] [CrossRef]
- Linnenberger, R.; Hoppstädter, J.; Wrublewsky, S.; Ampofo, E.; Kiemer, A.K. Statins and Bempedoic Acid: Different Actions of Cholesterol Inhibitors on Macrophage Activation. Int. J. Mol. Sci. 2021, 22, 12480. [Google Scholar] [CrossRef]
- Colli, S.; Eligini, S.; Lalli, M.; Camera, M.; Paoletti, R.; Tremoli, E. Vastatins Inhibit Tissue Factor in Cultured Human Macrophages. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 265–272. [Google Scholar] [CrossRef]
- Bellosta, S.; Via, D.; Canavesi, M.; Pfister, P.; Fumagalli, R.; Paoletti, R.; Bernini, F. HMG-CoA Reductase Inhibitors Reduce MMP-9 Secretion by Macrophages. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1671–1678. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.C.; Chen, C.W.; Chen, J.C.; Lin, W.W. Statins Induce Suppressor of Cytokine Signaling-3 in Macrophages. FEBS Lett. 2003, 555, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Rival, Y.; Benéteau, N.; Chapuis, V.; Taillandier, T.; Lestienne, F.; Dupont-Passelaigue, E.; Patoiseau, J.F.; Colpaert, F.C.; Junquéro, D. Cardiovascular Drugs Inhibit MMP-9 Activity from Human THP-1 Macrophages. DNA Cell Biol. 2004, 23, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Tachibana, I.; Takeda, Y.; He, P.; Kang, S.; Suzuki, M.; Kuhara, H.; Tetsumoto, S.; Tsujino, K.; Minami, T.; et al. Statins Decrease Lung Inflammation in Mice by Upregulating Tetraspanin CD9 in Macrophages. PLoS ONE 2013, 8, e73706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauerova, S.; Bartuskova, H.; Muffova, B.; Janousek, L.; Fronek, J.; Petras, M.; Poledne, R.; Lesna, I.K. Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation. Biomedicines 2021, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Pahan, K.; Sheikh, F.G.; Namboodiri, M.S.; Singh, I. Lovastatin and Phenylacetate Inhibit the Induction of Nitric Oxide Synthase and Cytokines in Rat Primary Astrocytes, Microglia, and Macrophages. J. Clin. Investig. 1997, 100, 2671–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monick, M.M.; Powers, L.S.; Butler, N.S.; Hunninghake, G.W. Inhibition of Rho Family GTPases Results in Increased TNF-α Production After Lipopolysaccharide Exposure. J. Immunol. 2003, 171, 2625–2630. [Google Scholar] [CrossRef] [Green Version]
- Arikan, M.C.; Shapiro, S.D.; Mariani, T.J. Induction of Macrophage Elastase (MMP-12) Gene Expression by Statins. J. Cell. Physiol. 2005, 204, 139–145. [Google Scholar] [CrossRef]
- Frey, T.; De Maio, A. Increased Expression of CD14 in Macrophages after Inhibition of the Cholesterol Biosynthetic Pathway by Lovastatin. Mol. Med. 2007, 13, 592–604. [Google Scholar] [CrossRef]
- Lee, S.J.; Qin, H.; Benveniste, E.N. The IFN-γ-Induced Transcriptional Program of the CIITA Gene Is Inhibited by Statins. Eur. J. Immunol. 2008, 38, 2325. [Google Scholar] [CrossRef]
- Zanin, V.; Marcuzzi, A.; Kleiner, G.; Piscianz, E.; Monasta, L.; Zacchigna, S.; Crovella, S.; Zauli, G. Lovastatin Dose-Dependently Potentiates the Pro-Inflammatory Activity of Lipopolysaccharide Both In Vitro and In Vivo. J. Cardiovasc. Transl. Res. 2013, 6, 981. [Google Scholar] [CrossRef] [Green Version]
- Chow, O.A.; Von Köckritz-Blickwede, M.; Bright, A.T.; Hensler, M.E.; Zinkernagel, A.S.; Cogen, A.L.; Gallo, R.L.; Monestier, M.; Wang, Y.; Glass, C.K.; et al. Statins Enhance Formation of Phagocyte Extracellular Traps. Cell Host Microbe 2010, 8, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Huang, Y.C.T.; Koziel, H.; de Crom, R.; Ruetten, H.; Wohlfart, P.; Thomsen, R.W.; Kahlert, J.A.; Sørensen, H.T.; Jozefowski, S.; et al. Female Resistance to Pneumonia Identifies Lung Macrophage Nitric Oxide Synthase-3 as a Therapeutic Target. ELife 2014, 3, e03711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, M.; Matsuda, M.; Kobayashi, H.; Miyata, Y.; Nakayama, Y.; Komuro, R.; Fukuhara, A.; Shimomura, I. Effects of Statins on Adipose Tissue Inflammation: Their Inhibitory Effect on MyD88-Independent IRF3/IFN-β Pathway in Macrophages. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 871–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, C.; Copin, C.; Kandoussi, M.; Davidson, R.; Moreau, M.; McTaggiart, F.; Chapman, M.J.; Fruchart, J.C.; Rouis, M. Rosuvastatin Reduces MMP-7 Secretion by Human Monocyte-Derived Macrophages: Potential Relevance to Atherosclerotic Plaque Stability. Atherosclerosis 2004, 174, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Verreth, W.; De Keyzer, D.; Davey, P.C.; Geeraert, B.; Mertens, A.; Herregods, M.C.; Smith, G.; Desjardins, F.; Balligand, J.L.; Holvoet, P. Rosuvastatin Restores Superoxide Dismutase Expression and Inhibits Accumulation of Oxidized LDL in the Aortic Arch of Obese Dyslipidemic Mice. Br. J. Pharmacol. 2007, 151, 347–355. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Rosuvastatin Blocks Advanced Glycation End Products-Elicited Reduction of Macrophage Cholesterol Efflux by Suppressing NADPH Oxidase Activity via Inhibition of Geranylgeranylation of Rac-1. Horm. Metab. Res. 2011, 43, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.S.; Lee, S.H.; Fouladian, Z.; Lee, J.Y.; Kim, T.; Kang, M.K.; Lusis, A.J.; Boström, K.I.; Kim, R.H.; Park, N.H. Rosuvastatin Prevents the Exacerbation of Atherosclerosis in Ligature-Induced Periodontal Disease Mouse Model. Sci. Rep. 2020, 10, 6383. [Google Scholar] [CrossRef] [Green Version]
- Giroux, L.M.; Davignon, J.; Naruszewicz, M. Simvastatin Inhibits the Oxidation of Low-Density Lipoproteins by Activated Human Monocyte-Derived Macrophages. Biochim. Biophys. Acta-Lipids Lipid Metab. 1993, 1165, 335–338. [Google Scholar] [CrossRef]
- Matsumoto, M.; Einhaus, D.; Gold, E.S.; Aderem, A. Simvastatin Augments Lipopolysaccharide-Induced Proinflammatory Responses in Macrophages by Differential Regulation of the c-Fos and c-Jun Transcription Factors. J. Immunol. 2004, 172, 7377–7384. [Google Scholar] [CrossRef] [Green Version]
- Veillard, N.R.; Braunersreuther, V.; Arnaud, C.; Burger, F.; Pelli, G.; Steffens, S.; Mach, F. Simvastatin Modulates Chemokine and Chemokine Receptor Expression by Geranylgeranyl Isoprenoid Pathway in Human Endothelial Cells and Macrophages. Atherosclerosis 2006, 188, 51–58. [Google Scholar] [CrossRef]
- Lindholm, M.W.; Nilsson, J. Simvastatin Stimulates Macrophage Interleukin-1β Secretion through an Isoprenylation-Dependent Mechanism. Vascul. Pharmacol. 2007, 46, 91–96. [Google Scholar] [CrossRef]
- Tuomisto, T.T.; Lumivuori, H.; Kansanen, E.; Häkkinen, S.K.; Turunen, M.P.; Van Thienen, J.V.; Horrevoets, A.J.; Levonen, A.L.; Ylä-Herttuala, S. Simvastatin Has an Anti-Inflammatory Effect on Macrophages via Upregulation of an Atheroprotective Transcription Factor, Kruppel-like Factor 2. Cardiovasc. Res. 2008, 78, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benati, D.; Ferro, M.; Savino, M.T.; Ulivieri, C.; Schiavo, E.; Nuccitelli, A.; Pasini, F.L.; Baldari, C.T. Opposite Effects of Simvastatin on the Bactericidal and Inflammatory Response of Macrophages to Opsonized S. Aureus. J. Leukoc. Biol. 2010, 87, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.M.; Smelser, L.K.; Then, J.E.; Stankiewicz, T.E.; Kushdilian, M.; McDowell, S.A.; Bruns, H.A. Short Term Statin Treatment Improves Survival and Differentially Regulates Macrophage-Mediated Responses to Staphylococcus Aureus. Curr. Pharm. Biotechnol. 2013, 14, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, S.P.; Guler, R.; Lang, D.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Simvastatin Enhances Protection against Listeria Monocytogenes Infection in Mice by Counteracting Listeria-Induced Phagosomal Escape. PLoS ONE 2013, 8, e75490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkorashy, M. Anti-Inflammatory Actions of Statins in Human Macrophages. Maarab Alkorashy and Dipak P. Ramji. Atherosclerosis 2014, 235, e266. [Google Scholar] [CrossRef]
- Davaro, F.; Forde, S.D.; Garfield, M.; Jiang, Z.; Halmen, K.; Tamburro, N.D.; Kurt-Jones, E.; Fitzgerald, K.A.; Golenbock, D.T.; Wang, D. 3-Hydroxyl-3-Methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitor (Statin)-Induced 28-KDa Interleukin-1β Interferes with Mature IL-1β Signaling. J. Biol. Chem. 2014, 289, 16214–16222. [Google Scholar] [CrossRef] [Green Version]
- Parihar, S.P.; Hartley, M.A.; Hurdayal, R.; Guler, R.; Brombacher, F. Topical Simvastatin as Host-Directed Therapy against Severity of Cutaneous Leishmaniasis in Mice. Sci. Rep. 2016, 6, 33458. [Google Scholar] [CrossRef]
- Liao, W.C.; Huang, M.Z.; Wang, M.L.; Lin, C.J.; Lu, T.L.; Lo, H.R.; Pan, Y.J.; Sun, Y.C.; Kao, M.C.; Lim, H.J.; et al. Statin Decreases Helicobacter Pylori Burden in Macrophages by Promoting Autophagy. Front. Cell. Infect. Microbiol. 2017, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T.; Kawai, T. Toll-like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, L.; Chen, S. Endogenous Toll-like Receptor Ligands and Their Biological Significance. J. Cell. Mol. Med. 2010, 14, 2592. [Google Scholar] [CrossRef] [Green Version]
- Andreakos, E.; Foxwell, B.; Feldmann, M. Is Targeting Toll-like Receptors and Their Signaling Pathway a Useful Therapeutic Approach to Modulating Cytokine-Driven Inflammation? Immunol. Rev. 2004, 202, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Mullick, A.E.; Tobias, P.S.; Curtiss, L.K. Modulation of Atherosclerosis in Mice by Toll-like Receptor 2. J. Clin. Investig. 2005, 115, 3149–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullick, A.E.; Tobias, P.S.; Curtiss, L.K. Toll-like Receptors and Atherosclerosis. Immunol. Res. 2006, 34, 193–209. [Google Scholar] [CrossRef]
- Li, H.; Sun, B. Toll-like Receptor 4 in Atherosclerosis. J. Cell. Mol. Med. 2007, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Michelsen, K.S.; Doherty, T.M.; Shah, P.K.; Arditi, M. Role of Toll-like Receptors in Atherosclerosis. Circ. Res. 2004, 95, e96–e97. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Toll-like Receptor Control of the Adaptive Immune Responses. Nat. Immunol. 2004, 5, 987–995. [Google Scholar] [CrossRef]
- Takeda, K.; Akira, S. Toll-like Receptors in Innate Immunity. Int. Immunol. 2005, 17, 1–14. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Signaling to NF-KB by Toll-like Receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef]
- Hertzog, P.J.; O’Neill, L.A.; Hamilton, J.A. The Interferon in TLR Signaling: More than Just Antiviral. Trends Immunol. 2003, 24, 534–539. [Google Scholar] [CrossRef]
- Kagan, J.C.; Su, T.; Horng, T.; Chow, A.; Akira, S.; Medzhitov, R. TRAM Couples Endocytosis of Toll-like Receptor 4 to the Induction of Interferon-β. Nat. Immunol. 2008, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Hilgendorff, A.; Muth, H.; Parviz, B.; Staubitz, A.; Haberbosch, W.; Tillmanns, H.; Hölschermann, H. Statins Differ in Their Ability to Block NF-KappaB Activation in Human Blood Monocytes. Int. J. Clin. Pharmacol. Ther. 2003, 41, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.C.; Kang, J.C.; Lu, Y.T.; Hsu, M.J.; Liao, C.C.; Chiu, W.T.; Yeh, F.L.; Lin, C.H. Rac1 Regulates Peptidoglycan-Induced Nuclear Factor-ΚB Activation and Cyclooxygenase-2 Expression in RAW 264.7 Macrophages by Activating the Phosphatidylinositol 3-Kinase/Akt Pathway. Mol. Immunol. 2009, 46, 1179–1188. [Google Scholar] [CrossRef]
- Hwang, J.; Jin, J.; Jeon, S.; Moon, S.H.; Park, M.Y.; Yum, D.Y.; Kim, J.H.; Kang, J.E.; Park, M.H.; Kim, E.J.; et al. SOD1 Suppresses Pro-Inflammatory Immune Responses by Protecting against Oxidative Stress in Colitis. Redox Biol. 2020, 37, 101760. [Google Scholar] [CrossRef] [PubMed]
- Bruiners, N.; Dutta, N.K.; Guerrini, V.; Salamon, H.; Yamaguchi, K.D.; Karakousis, P.C.; Gennaro, M.L. The Anti-Tubercular Activity of Simvastatin Is Mediated by Cholesterol-Driven Autophagy via the AMPK-MTORC1-TFEB Axis. J. Lipid Res. 2020, 61, 1617. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.M.; Li, X.; Xu, M.; Abais, J.M.; Chen, Y.; Riebling, C.R.; Boini, K.M.; Li, P.L.; Zhang, Y. Enhancement of Autophagy by Simvastatin through Inhibition of Rac1-MTOR Signaling Pathway in Coronary Arterial Myocytes. Cell. Physiol. Biochem. 2013, 31, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Ikeda, U. Matrix Metalloproteinases and Atherosclerosis. Curr. Atheroscler. Rep. 2004, 6, 112–120. [Google Scholar] [CrossRef]
- Esnault, S.; Kelly, E.A.; Johnson, S.H.; Delain, L.P.; Haedt, M.J.; Noll, A.L.; Sandbo, N.; Jarjour, N.N. Matrix Metalloproteinase-9-Dependent Release of IL-1 β by Human Eosinophils. Mediators Inflamm. 2019, 2019, 7479107. [Google Scholar] [CrossRef] [Green Version]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 2013, 28, 391. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.W.; Lee, K.W.; Kim, D.; Lee, Y.; Jeon, O.H.; Kwon, H.J.; Kim, D.S. NF-KappaB-Dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7. J. Biochem. Mol. Biol. 2007, 40, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.J.; Bond, M.; Crook, M.F.; Newby, A.C. Role of Nuclear Factor-ΚB Activation in Metalloproteinase-1, -3, and -9 Secretion by Human Macrophages in Vitro and Rabbit Foam Cells Produced in Vivo. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Lin, S.G.; Huang, X.R.; Bacher, M.; Leng, L.; Bucala, R.; Lan, H.Y. Macrophage Migration Inhibitory Factor Induces MMP-9 Expression in Macrophages via the MEK-ERK MAP Kinase Pathway. J. Interferon Cytokine Res. 2007, 27, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Brosseau, C.; Colas, L.; Magnan, A.; Brouard, S. CD9 Tetraspanin: A New Pathway for the Regulation of Inflammation? Front. Immunol. 2018, 9, 2316. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Tachibana, I.; Takeda, Y.; He, P.; Minami, S.; Iwasaki, T.; Kida, H.; Goya, S.; Kijima, T.; Yoshida, M.; et al. Tetraspanin CD9 Negatively Regulates Lipopolysaccharide-Induced Macrophage Activation and Lung Inflammation. J. Immunol. 2009, 182, 6485–6493. [Google Scholar] [CrossRef] [PubMed]
- Guha, M.; Mackman, N. LPS Induction of Gene Expression in Human Monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of IL-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The Inflammasome: A Caspase-1 Activation Platform Regulating Immune Responses and Disease Pathogenesis. Nat. Immunol. 2009, 10, 241. [Google Scholar] [CrossRef]
- Chilton, P.M.; Embry, C.A.; Mitchell, T.C. Effects of Differences in Lipid A Structure on TLR4 Pro-Inflammatory Signaling and Inflammasome Activation. Front. Immunol. 2012, 3, 154. [Google Scholar] [CrossRef] [Green Version]
- Miller, Y.I.; Choi, S.H.; Wiesner, P.; Bae, Y.S. The SYK Side of TLR4: Signalling Mechanisms in Response to LPS and Minimally Oxidized LDL. Br. J. Pharmacol. 2012, 167, 990. [Google Scholar] [CrossRef] [Green Version]
- McLaren, J.E.; Ramji, D.P. Interferon Gamma: A Master Regulator of Atherosclerosis. Cytokine Growth Factor Rev. 2009, 20, 125–135. [Google Scholar] [CrossRef]
- Yu, X.H.; Zhang, J.; Zheng, X.L.; Yang, Y.H.; Tang, C.K. Interferon-γ in Foam Cell Formation and Progression of Atherosclerosis. Clin. Chim. Acta 2015, 441, 33–43. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An Overview of Signals, Mechanisms and Functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Reith, W.; LeibundGut-Landmann, S.; Waldburger, J.M. Regulation of MHC Class II Gene Expression by the Class II Transactivator. Nat. Rev. Immunol. 2005, 5, 793–806. [Google Scholar] [CrossRef]
- Ramgolam, V.S.; Markovic-Plese, S. Regulation of Suppressors of Cytokine Signaling as a Therapeutic Approach in Autoimmune Diseases, with an Emphasis on Multiple Sclerosis. J. Signal Transduct. 2011, 2011, 635721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, Q.; Tan, Q.; Feng, Z.; He, Z.; Tang, J.; Feng, H.; Zhu, G.; Chen, Z. Simvastatin Accelerates Hematoma Resolution after Intracerebral Hemorrhage in a PPARγ-Dependent Manner. Neuropharmacology 2018, 128, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Zi, L.; Zhou, W.; Xu, J.; Li, J.; Li, N.; Xu, J.; You, C.; Wang, C.; Tian, M. Rosuvastatin Nanomicelles Target Neuroinflammation and Improve Neurological Deficit in a Mouse Model of Intracerebral Hemorrhage. Int. J. Nanomed. 2021, 16, 2933–2947. [Google Scholar] [CrossRef] [PubMed]
- Fujita, E.; Shimizu, A.; Masuda, Y.; Kuwahara, N.; Arai, T.; Nagasaka, S.; Aki, K.; Mii, A.; Natori, Y.; Iino, Y.; et al. Statin Attenuates Experimental Anti-Glomerular Basement Membrane Glomerulonephritis Together with the Augmentation of Alternatively Activated Macrophages. Am. J. Pathol. 2010, 177, 1143. [Google Scholar] [CrossRef]
- Xu, X.; Gao, W.; Cheng, S.; Yin, D.; Li, F.; Wu, Y.; Sun, D.; Zhou, S.; Wang, D.; Zhang, Y.; et al. Anti-Inflammatory and Immunomodulatory Mechanisms of Atorvastatin in a Murine Model of Traumatic Brain Injury. J. Neuroinflamm. 2017, 14, 167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xiao, S.; Li, Q. Pravastatin Polarizes the Phenotype of Macrophages toward M2 and Elevates Serum Cholesterol Levels in Apolipoprotein E Knockout Mice. J. Int. Med. Res. 2018, 46, 3365–3373. [Google Scholar] [CrossRef]
- Härdtner, C.; Kornemann, J.; Krebs, K.; Ehlert, C.A.; Jander, A.; Zou, J.; Starz, C.; Rauterberg, S.; Sharipova, D.; Dufner, B.; et al. Inhibition of Macrophage Proliferation Dominates Plaque Regression in Response to Cholesterol Lowering. Basic Res. Cardiol. 2020, 115, 78. [Google Scholar] [CrossRef]
- Feig, J.E.; Shang, Y.; Rotllan, N.; Vengrenyuk, Y.; Wu, C.; Shamir, R.; Torra, I.P.; Fernandez-Hernando, C.; Fisher, E.A.; Garabedian, M.J. Statins Promote the Regression of Atherosclerosis via Activation of the CCR7-Dependent Emigration Pathway in Macrophages. PLoS ONE 2011, 6, e28534. [Google Scholar] [CrossRef]
- Gianella, A.; Nobili, E.; Abbate, M.; Zoja, C.; Gelosa, P.; Mussoni, L.; Bellosta, S.; Canavesi, M.; Rottoli, D.; Guerrini, U.; et al. Rosuvastatin Treatment Prevents Progressive Kidney Inflammation and Fibrosis in Stroke-Prone Rats. Am. J. Pathol. 2007, 170, 1165–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, D.T.; Poletto, A.C.; Favaro, R.R.; Martins, J.O.; Zorn, T.M.T.; Machado, U.F. Anti-Inflammatory Effect of Atorvastatin Ameliorates Insulin Resistance in Monosodium Glutamate–Treated Obese Mice. Metabolism 2010, 59, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.J. Macrophages in Atherosclerosis Regression. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 20–33. [Google Scholar] [CrossRef]
- Kiener, P.A.; Davis, P.M.; Murray, J.L.; Youssef, S.; Rankin, B.M.; Kowala, M. Stimulation of Inflammatory Responses in Vitro and in Vivo by Lipophilic HMG-CoA Reductase Inhibitors. Int. Immunopharmacol. 2001, 1, 105–118. [Google Scholar] [CrossRef]
- Mira, E.; Carmona-Rodríguez, L.; Tardáguila, M.; Azcoitia, I.; González-Martín, A.; Almonacid, L.; Casas, J.; Fabriás, G.; Mañes, S. A Lovastatin-Elicited Genetic Program Inhibits M2 Macrophage Polarization and Enhances T Cell Infiltration into Spontaneous Mouse Mammary Tumors. Oncotarget 2013, 4, 2288. [Google Scholar] [CrossRef]
- Brown, G.; Albers, J.J.; Fisher, L.D.; Schaefer, S.M.; Lin, J.-T.; Kaplan, C.; Zhao, X.-Q.; Bisson, B.D.; Fitzpatrick, V.F.; Dodge, H.T. Regression of Coronary Artery Disease as a Result of Intensive Lipid-Lowering Therapy in Men with High Levels of Apolipoprotein B. N. Engl. J. Med. 1990, 323, 1289–1298. [Google Scholar] [CrossRef]
- Brown, B.G.; Zhao, X.Q. Importance of Endothelial Function in Mediating the Benefits of Lipid- Lowering Therapy. Am. J. Cardiol. 1998, 82, 49–52. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Brown, B.G.; Ganz, P.; Vogel, R.A.; Crowe, T.; Howard, G.; Cooper, C.J.; Brodie, B.; et al. Effect of Intensive Compared With Moderate Lipid-Lowering Therapy on Progression of Coronary Atherosclerosis: A Randomized Controlled Trial. JAMA 2004, 291, 1071–1080. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; et al. Effect of Two Intensive Statin Regimens on Progression of Coronary Disease. N. Engl. J. Med. 2011, 365, 2078–2087. [Google Scholar] [CrossRef] [Green Version]
- Pucci, A.; Formato, L.; Muscio, M.; Brscic, E.; Pizzimenti, S.; Ferroni, F.; Ribezzo, M.; Toaldo, C.; Pettazzoni, P.; Ciamporcero, E.; et al. PPARγ in Coronary Atherosclerosis: In Vivo Expression Pattern and Correlations with Hyperlipidemic Status and Statin Treatment. Atherosclerosis 2011, 218, 479–485. [Google Scholar] [CrossRef]
- Hothersall, E.J.; Chaudhuri, R.; McSharry, C.; Donnelly, I.; Lafferty, J.; McMahon, A.D.; Weir, C.J.; Meiklejohn, J.; Sattar, N.; McInnes, I.; et al. Effects of Atorvastatin Added to Inhaled Corticosteroids on Lung Function and Sputum Cell Counts in Atopic Asthma. Thorax 2008, 63, 1070–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, M.; Knox, A.; McKeever, T.; Meakin, G.; Bailey, H.; Cockcroft, J.; Shale, D.; Harrison, T.; Bolton, C. S27 The Effects of Statin Therapy on Inflammatory Markers in Patients with Copd: A Double Blind Randomised Controlled Trial. Thorax 2013, 68 (Suppl. 3), A16–A17. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A Repurposed Drug to Fight Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef]
- Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin Therapy and Autoimmune Disease: From Protein Prenylation to Immunomodulation. Nat. Rev. Immunol. 2006, 6, 358–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grudzinska, F.S.; Dosanjh, D.P.S.; Parekh, D.; Dancer, R.C.A.; Patel, J.; Nightingale, P.; Walton, G.M.; Sapey, E.; Thickett, D.R. Statin Therapy in Patients with Community-Acquired Pneumonia. Clin. Med. 2017, 17, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundra, U.M.; Girgis, N.M.; Ruckerl, D.; Jenkins, S.; Ward, L.N.; Kurtz, Z.D.; Wiens, K.E.; Tang, M.S.; Basu-Roy, U.; Mansukhani, A.; et al. Alternatively Activated Macrophages Derived from Monocytes and Tissue Macrophages Are Phenotypically and Functionally Distinct. Blood 2014, 123, e110–e122. [Google Scholar] [CrossRef] [Green Version]
- Zajd, C.M.; Ziemba, A.M.; Miralles, G.M.; Nguyen, T.; Feustel, P.J.; Dunn, S.M.; Gilbert, R.J.; Lennartz, M.R. Bone Marrow-Derived and Elicited Peritoneal Macrophages Are Not Created Equal: The Questions Asked Dictate the Cell Type Used. Front. Immunol. 2020, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Shiratori, H.; Feinweber, C.; Luckhardt, S.; Linke, B.; Resch, E.; Geisslinger, G.; Weigert, A.; Parnham, M.J. THP-1 and Human Peripheral Blood Mononuclear Cell-Derived Macrophages Differ in Their Capacity to Polarize in Vitro. Mol. Immunol. 2017, 88, 58–68. [Google Scholar] [CrossRef]
- Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization? Front. Pharmacol. 2018, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Hasday, J.D.; Crawford, E.K. Effects of Assay Medium Composition on Macrophage-Mediated Tumor Cell Binding and Lysis. J. Immunol. Methods 1988, 114, 243–252. [Google Scholar] [CrossRef]
- Lee, C.M.; Hu, J. Cell Density during Differentiation Can Alter the Phenotype of Bone Marrow-Derived Macrophages. Cell Biosci. 2013, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakami, T.; Kawamura, K.; Fujimori, K.; Koike, A.; Amano, F. Influence of the Culture Medium on the Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase by Activated Macrophages in Vitro. Biochem. Biophys. Rep. 2016, 5, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Guo, M.; Xu, J.; Wu, F.; Fan, J.; Huang, Q.; Yang, G.; Lv, Z.; Wang, X.; Jin, Y. Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents against Cancer and Inflammation. Front. Immunol. 2019, 10, 1998. [Google Scholar] [CrossRef] [PubMed]
Statin Name | Brand Name | Daily Dose (mg) | Effect on LDL Cholesterol (% Decrease) | Lipophilicity | Marketed Drug Form | Half-Life (h) | Primary Metabolizing Enzyme(s) |
---|---|---|---|---|---|---|---|
Atorvastatin | Lipitor | 10–80 [20] | 37–55 [21,22] | Lipophilic [15] | Acid [15] | 14 [15,20] | CYP3A4 [15] |
Cerivastatin a | Baycol | 0.02–0.8 [23] | 12–42 [24] | Lipophilic [15] | Acid [15] | 2–4 [23] | CYP3A4, 2C8 [15,23] |
Fluvastatin | Lescol | 20–80 [25] | 21–33 [21,22] | Lipophilic [15] | Acid [15] | 3 [25] | CYP2C9 [15,25] |
Lovastatin | Mevacor | 10–80 [26] | 21–45 [21] | Lipophilic [15] | Lactone [15] | 3 [15] | CYP3A4 [15,26] |
Metavastatin b | Lipophilic [27] | ||||||
Pitavastatin | Livalo | 1–4 [28] | 33–44 [29] | Lipophilic [15] | Acid [15] | 12 [28] | CYP2C8, 2C9 [15,28] |
Pravastatin | Pravachol | 10–80 [30] | 20–33 [21] | Hydrophilic [15] | Acid [15] | 1.8 [15,30] | Non-CYP [15] |
Rosuvastatin | Crestor | 5–40 [31] | 38–53 [21,22] | Hydrophilic [15] | Acid [15] | 19 [15,31] | CYP2C9 [31] |
Simvastatin | Zocor | 5–80 [32] | 23–42 [21,22] | Lipophilic [15] | Lactone [15] | 2 [15] | CYP3A4 [15,32] |
Statin | Model | Summary | Inflammatory Effect | Ref. | |
---|---|---|---|---|---|
Pro | Anti | ||||
Atorvastatin | Human PBMC derived macrophages | Statins acted as inhibitors of the induction of MHC-II expression by IFN-γ due to suppression of CIITA transcription. Statins repressed MHC-II mediated T-cell activation. | ✓ | [79] | |
Primary macrophages from B10.PL mice | Atorvastatin prevented IFN-γ induced MHC-II, CD40, CD80, and CD86 expression. | ✓ | [80] | ||
RAW 264.7 macrophages | Atorvastatin inhibited LPS and IFN-γ-induced NO formation and iNOS induction—thought to be mediated through suppression of NF-κB activation and IFN-γ through STAT1. | ✓ | [81] | ||
Murine peritoneal macrophages | Atorvastatin pretreatment enhanced TLR2 and TLR4 ligand-stimulated IL-6 and TNF production. | ✓ | [82] | ||
RAW 264.7 macrophages | Enhanced LPS-mediated MMP-9 gene expression. | ✓ | [83] | ||
RAW 264.7 macrophages | Atorvastatin pretreatment inhibited oxLDL-induced increase in COX-2, TNFα, and MCP-1 secretion. | ✓ | [84] | ||
Murine BMDMs | Atorvastatin pretreatment exacerbated LPS-induced upregulation of Il-1b, IL-6, and NLRP3 transcript levels. | ✓ | [85] | ||
Human PBMC derived macrophages | Statin treatment in combination with IL-4 during the macrophage differentiation phase led to increased M2 polarization via PPARγ activation. | ✓ | [86] | ||
RAW 264.7 macrophages | Atorvastatin pretreatment inhibited LPS-induced IL-1β and TNFα production in RAW 264.7 macrophages through the enhancement of autophagy. Statin treatment was seen to attenuate NLRP3 inflammasome induction in response to LPS stimulation. Atorvastatin pretreatment inhibited the expression of IL-1β in response to LPS stimulation in peritoneal murine macrophages through autophagy activation, but not that of TNFα. | ✓ | [87] | ||
Human PBMC derived macrophages | Atorvastatin reduced matrix degradation capability via reduced MMP-14 activation and uPAR localization to filipodia in LPS and IFN-γ stimulated macrophages. | ✓ | [88] | ||
RAW 264.7 macrophages and J774 macrophages | Atorvastatin increased Rac1 GTP-loading in LPS stimulated macrophages, enhancing production of the proinflammatory cytokines IL-1β, TNFα, and IL-6. | ✓ | [89] | ||
Human monocyte derived macrophages | Statin treatment during macrophage differentiation phase led to enhanced LPS-induced IL-1β and IL-6 secretion. | ✓ | [90] | ||
THP1 derived macrophages | Statin treatment led to increased pro-inflammatory cytokine (IL-1β, TNFα, and IL-6) and AdipoR expression (also seen in combination with oxLDL stimulation); 24 h statin treatment resulted in increased IL-10 mRNA levels, whilst 72 h treatment resulted in decreased expression. | ✓ | [91] | ||
Murine BMDMs | Statin-treated macrophages exhibited increased LPS-induced activation of NF-κB and IL-1β protein secretion in response to inflammasome stimulation. | ✓ | ✓ | [92] | |
Murine BMDMs | Statin pretreatment exacerbated LPS-induced upregulation of IL-1β and NLRP3 transcript levels via p38 and mTOR. | ✓ | [93] | ||
THP1 derived macrophages | Impaired MWCNT-elicited IL-1β secretion. | ✓ | [94] | ||
Cerivastatin | Human PBMC derived macrophages | Cerivastatin treatment suppressed growth of macrophages expressing MMPs and TFs. | ✓ | [95] | |
Rabbit foamy macrophages | Decreased protein expression and activity of MMP-1, MMP-2, and MMP-9. | ✓ | [96] | ||
RAW-Blue™ cells and Murine BMDMs | Cerivastatin increased NF-κB/AP-1 activation in unstimulated and LPS-activated macrophages. LPS-induced TNF, IL-1β, and IL-6 expression was amplified. Expression of arginase-1 and GILZ was enhanced in unstimulated, LPS- and IL-4-activated macrophages. | ✓ | ✓ | [97] | |
Fluvastatin | human PBMC derived macrophages | Fluvastatin decreased TF activity in both unstimulated and LPS-, or ac-LDL-stimulated macrophages, but enhanced IL-1β cytokine release. | ✓ | ✓ | [98] |
Murine peritoneal macrophages and human PBMC derived macrophages | Simvastatin decreased MMP-9 protein secretion and inhibited TPA-induced enhanced MMP-9 release. | ✓ | [99] | ||
RAW 264.7 macrophages | Fluvastatin inhibited LPS and IFN-γ-induced NO formation and iNOS induction.Thought to be mediated through suppression of NF-κB activation and IFN-γ through STAT1. | ✓ | [81] | ||
RAW 264.7 macrophages | Fluvastatin upregulated macrophage Socs3 expression, resulting in low responsiveness to inflammatory signals (IFN-γ, IL-6, and M-CSF) due to lower activation of STAT1, STAT3, and STAT5. | ✓ | [100] | ||
THP1 derived macrophages and THP1 derived acLDL loaded macrophages | Fluvastatin reduced both the expression, secretion, and proportion of active MMP-9 in PMA stimulated and acLDL-loaded THP1 derived macrophages. | ✓ | [101] | ||
RAW 264.7 macrophages and murine BMDMs | Fluvastatin inhibited LPS-induced suppression of CD9, leading to reduced formation of CD14/TLR4 complexes and TNFα and MMP-9 release. | ✓ | [102] | ||
Murine BMDMs | Fluvastatin pre-treatment exacerbated LPS-induced upregulation of IL-1b, IL-6, and NLRP3 transcript levels. Statin and LPS treatment of BMDMs harvested from NLRP3−/− mice synergistically enhanced IL-6 but did not affect IL-1β secretion. Statin treatment alone had no effect on the production of inflammatory mediators. | ✓ | [85] | ||
Human monocyte derived macrophages | Statin treatment during macrophage differentiation phase led to enhanced LPS-induced IL-1β and IL-6 secretion. | ✓ | [90] | ||
Murine BMDMs | Statin pretreatment exacerbated LPS-induced upregulation of IL-1b and NLRP3 transcript levels via p38 and mTOR. | ✓ | [93] | ||
THP1 derived macrophages | Impaired MWCNT-elicited IL-1β secretion. | ✓ | [94] | ||
Human PBMC derived macrophages | Decreased the activity of iNOS in M1 macrophages. | ✓ | [103] | ||
Lovastatin | Rat peritoneal macrophages and microglia | Inhibited LPS-induced production of NO, TNFα, IL-1β, and IL-6 in rat primary microglia and macrophages. | ✓ | [104] | |
Human PBMC derived macrophages | Statins acted as inhibitors of the induction of MHC-II expression by IFN-γ due to suppression of CIITA transcription. Statins repressed MHC-II mediated T-cell activation. | ✓ | [79] | ||
RAW 264.7 macrophages | Lovastatin inhibited LPS and IFN-γ-induced NO formation and iNOS induction—thought to be mediated through suppression of NF-κB activation and IFN-γ through STAT1. | ✓ | [81] | ||
RAW 264.7 macrophages | Lovastatin upregulated macrophage Socs3 expression, resulting in low responsiveness to inflammatory signals (IFN-γ, IL-6, and M-CSF) due to lower activation of STAT1, STAT3, and STAT5. | ✓ | [100] | ||
Rabbit foamy macrophages | Decreased protein expression and activity of MMP-1, MMP-2, and MMP-9. | ✓ | [96] | ||
RAW 264.7 macrophages | Lovastatin increased LPS-induced TNFα production. | ✓ | [105] | ||
P388D1 macrophages | Statins increased production of MMP-12 in activated macrophage. | ✓ | [106] | ||
RAW 264.7 macrophages | Lovastatin increased CD14 expression and enhanced LPS-induced membrane levels leading to greater TNFα production, but simultaneously suppressed soluble CD14. | ✓ | [107] | ||
BMDMs from C57BL/6J mice and RAW 264.7 macrophages | Lovastatin blocked IFN-γ-induced Citta gene expression by inhibiting transcriptional events at Citta pIV, thereby suppressing MHC-II expression. | ✓ | [108] | ||
RAW 264.7 macrophages | Lovastatin treatment induced NO release but did not affect pro-inflammatory cytokine levels in unstimulated cells. However, with LPS it synergistically enhanced IL-6, IL-12p40, IL-1β, and NO release. | ✓ | [109] | ||
Murine BMDMs | Lovastatin pretreatment exacerbated LPS-induced upregulation of IL-1b, IL-6, and NLRP3 transcript levels. | ✓ | [85] | ||
THP1 derived macrophages | Impaired MWCNT-elicited IL-1β secretion. | ✓ | [94] | ||
Metavastatin | P388D1 cell line | Statins increased production of MMP-12 in activated macrophages. | ✓ | [106] | |
U937 derived macrophages and RAW 264.7 macrophages | Metavastatin pretreatment significantly increased bacterial clearance, despite reducing oxidative burst and phagocytosis due to increased induction of extracellular traps. | ✓ | ✓ | [110] | |
J774A.1 mouse macrophages | Increased levels of iNOS and killing of internalized S. pneumoniae. | ✓ | [111] | ||
Pitavastatin | RAW 264.7 macrophages | Suppressed LPS-induced upregulation of MCP-1, iNOS, and IL-6 gene expression. | ✓ | [112] | |
THP1 derived macrophages, and murine peritoneal macrophages and BMDMs (BALB/cCrSlc mice) | Pravastatin repressed mature IL-1β release elicited by MWCNT/CC/MSU exposure in THP1-derived macrophages, and LPS + MWCNT induced mature IL-1β release in peritoneal macrophages. Pravastatin pretreatment strongly enhanced mature IL-1β release in LPS + MWCNT exposed BMDMs. | ✓ | ✓ | [94] | |
Pravastatin | Human PBMC derived macrophages | Statins acted as inhibitors of the induction of MHC-II expression by IFN-γ due to suppression of CIITA transcription. Statins repressed MHC-II mediated T-cell activation. | ✓ | [79] | |
RAW 264.7 macrophages | Pravastatin inhibited LPS and IFN-γ-induced NO formation and iNOS induction—thought to be mediated through suppression of NF-κB activation and IFN-γ through STAT1. | ✓ | [81] | ||
RAW 264.7 macrophages | Pravastatin upregulated macrophage Socs3 expression, resulting in low responsiveness to inflammatory signals (IFN-γ, IL-6, and M-CSF) due to lower activation of STAT1, STAT3, and STAT5. | ✓ | [100] | ||
RAW 264.7 macrophages | Suppressed LPS-induced upregulation of MCP-1, iNOS, and IL-6 gene expression. | ✓ | [112] | ||
Rosuvastatin | Human monocyte derived macrophages | Rosuvastatin reduced MMP-7 and MMP-9 production. | ✓ | [113] | |
oxLDL induced THP1 foam cells | Rosuvastatin inhibited ox-LDL-induced reduction of SOD1 expression. | ✓ | [114] | ||
THP1 derived macrophages | Rosuvastatin inhibited the AGE-RAGE axis and ROS production. | ✓ | [115] | ||
RAW 264.7 macrophages and J774 macrophages | Rosuvastatin increased Rac1 GTP-loading in LPS-stimulated macrophages, enhancing production of the proinflammatory cytokines IL-1β, TNFα, and IL-6. | ✓ | [89] | ||
Human monocyte derived macrophages | Statin treatment during macrophage differentiation phase led to enhanced LPS-induced IL-1β and IL-6 secretion | ✓ | [90] | ||
THP1 derived macrophages | Statin treatment led to increased pro-inflammatory cytokine (IL-1β, TNFα, and IL-6) and AdipoR expression (also seen in combination with oxLDL stimulation); 24 h statin treatment resulted in increased IL-10 mRNA levels, whilst 72 h treatment resulted in decreased expression. | ✓ | [91] | ||
THP1 derived macrophages | Inhibited foam cell formation and lessened the secretion of inflammatory cytokines (e.g., TNFα, IL-1β, and IL-6) from oxLDL-treated macrophages | ✓ | [116] | ||
Simvastatin | Human monocyte derived macrophages | Simvastatin decreased superoxide production and therefore LDL oxidation | ✓ | [117] | |
human PBMC derived macrophages | Simvastatin decreased TF activity in both unstimulated and LPS-stimulated/ac-LDL-stimulated macrophages. The suppression of TF activity induced by statin treatment was accompanied by a diminution in TF mRNA expression. | ✓ | [98] | ||
Murine peritoneal macrophages | Simvastatin decreased MMP-9 protein secretion and inhibited TPA-induced enhanced MMP-9 release. | ✓ | [99] | ||
Rabbit foamy macrophages | Decreased protein expression and activity of MMP-1, MMP-2, and MMP-9. | ✓ | [96] | ||
Peritoneal murine macrophages and RAW 264.7 macrophages | Simvastatin pretreatment enhanced both IL-12p40 and TNFα LPS-induced mRNA expression and protein production by a mechanism involving the AP-1 and C/EBP transcription factors, but IP-10 levels were reduced. | ✓ | ✓ | [118] | |
PBMC derived human macrophages | Simvastatin inhibited IFN-γ-induced upregulated mRNA expression of the chemokines MCP-1, MIP-1a, and MIP-1b and the chemokine receptors CCR1, CCR2, and CCR5. MCP-1 protein expression was also notably reduced. | ✓ | [119] | ||
human primary monocyte derived macrophages | Statin administration significantly increased the secretion of IL-1β but had no significant effect on IL-8 or IL-6 and inhibited the secretion of TNFα. In combination with agLDL loading, statin treatment enhanced secretion of IL-1β and IL-8, but had no effect on TNFα or IL-6 secretion. | ✓ | ✓ | [120] | |
BMDMs from C57BL/6J mice and RAW 264.7 macrophages | Simvastatin blocked IFN-γ-induced Citta gene expression by inhibiting transcriptional events at Citta pIV, thereby suppressing MHC-II expression. | ✓ | [108] | ||
PBMC derived human macrophages and THP1 derived macrophages | Simvastatin treatment led to the downregulation of inflammatory signalling pathways, marked by a reduction in the gene expression of proinflammatory associated chemokines (MCP-1, MIP-1, and tissue factor) and transcription factors (NF-κB and ETS-1). The anti-inflammatory associated transcription factor KLF-2 had upregulated gene and protein expression. | ✓ | [121] | ||
Murine peritoneal macrophages | Simvastatin pretreatment enhanced TLR2 and TLR4 ligand-stimulated IL-6 and TNF production. | ✓ | [82] | ||
RAW 264.7 macrophages | Enhanced LPS-mediated MMP-9 gene expression. | ✓ | [83] | ||
PBMC derived human macrophages, HL-60 derived macrophages and murine peritoneal macrophages (treated with simvastatin in vivo) | Simvastatin reduced phagocytosis and oxidative burst of IgG opsonized bacteria but enhanced the production of inflammatory mediators (TNFα and COX-2). No effect was seen on inflammatory mediators in response to non-opsonized bacteria, but impairment of phagocytosis remained. | ✓ | ✓ | [122] | |
RAW 264.7 macrophages | Simvastatin pretreatment reduced basal and S. aureus-stimulated levels of C5aR and dampened macrophage sensitivity to membrane vesicles released from infected cells, decreasing TNFα production. | ✓ | [123] | ||
RAW 264.7 macrophages and murine BMDMs | Simvastatin inhibited LPS induced suppression of CD9, leading to reduced formation of CD14/TLR4 complexes and TNFα and MMP-9 release. | ✓ | [102] | ||
RAW 264.7 macrophages and murine BMDMs | Simvastatin pretreatment enhanced IL-12p40 and TNFα production in IFN-γ and L. monocytogenes stimulated macrophages. Statins suppressed MHC-II surface expression on IFN-γ-activated macrophages | ✓ | ✓ | [124] | |
THP1 derived macrophages | Simvastatin pretreatment inhibited IFN-γ induced expression of MCP-1 and ICAM-1. | ✓ | [125] | ||
Murine BMDMs and human PBMCs | Simvastatin enhanced LPS-stimulated pro-IL-1β (28 kDa form), which disrupted mature IL-1β inflammatory actions. | ✓ | [126] | ||
Murine BMDMs | Simvastatin pretreatment exacerbated LPS-induced upregulation of IL-1b, IL-6, and NLRP3 transcript levels. | ✓ | [85] | ||
Murine BMDMs | Simvastatin reduced parasite burden by enhancing oxidative burst and phagosome maturation. | ✓ | [127] | ||
Raw 264.7 macrophages | Simvastatin repressed IL-1β secretion in response to H. pylori infection and increased autophagy. | ✓ | [128] | ||
Human monocyte derived macrophages | Statin treatment during macrophage differentiation phase led to enhanced LPS-induced IL-1β and IL-6 secretion | ✓ | [90] | ||
RAW-Blue™ cells and Murine BMDMs | Simvastatin increased NF-κB/AP-1 activation in unstimulated and LPS-activated macrophages. LPS-induced TNF, IL-1β, and IL-6 expression was amplified. Expression of arginase-1 and GILZ was enhanced in unstimulated, LPS-, and IL-4-activated macrophages. | ✓ | ✓ | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheridan, A.; Wheeler-Jones, C.P.D.; Gage, M.C. The Immunomodulatory Effects of Statins on Macrophages. Immuno 2022, 2, 317-343. https://doi.org/10.3390/immuno2020021
Sheridan A, Wheeler-Jones CPD, Gage MC. The Immunomodulatory Effects of Statins on Macrophages. Immuno. 2022; 2(2):317-343. https://doi.org/10.3390/immuno2020021
Chicago/Turabian StyleSheridan, Alanah, Caroline P. D. Wheeler-Jones, and Matthew C. Gage. 2022. "The Immunomodulatory Effects of Statins on Macrophages" Immuno 2, no. 2: 317-343. https://doi.org/10.3390/immuno2020021
APA StyleSheridan, A., Wheeler-Jones, C. P. D., & Gage, M. C. (2022). The Immunomodulatory Effects of Statins on Macrophages. Immuno, 2(2), 317-343. https://doi.org/10.3390/immuno2020021