Unveiling the Mechanics of AI Adoption in Journalism: A Multi-Factorial Exploration of Expectation Confirmation, Knowledge Management, and Sustainable Use
Abstract
:1. Introduction
2. Review of the Literature
2.1. AI Technologies in Journalism
2.2. AI Technologies in the Chinese News Industry
- RQ1: How do expectation confirmation and perceived usefulness influence journalists’ satisfaction and continued use of AI?
- RQ2: How can knowledge sharing, acquisition, and application help sustain AI integration?
- RQ3: What roles do ease of use, personal trust, and technological affinity have in sustained use?
3. Theoretical Approach
3.1. Expectation Confirmation
3.2. Perceived Usefulness
3.3. Perceived Satisfaction
3.4. Knowledge Sharing
3.5. Knowledge Acquisition
3.6. Knowledge Application
3.7. Perceived Ease of Use
3.8. Personal Trust
3.9. Technology Affinity
4. Research Methodology
4.1. Questionnaire Design
4.2. Data Collection and Participants
4.3. Sample Size Determination
4.4. Journalists’ Demographic Information
5. Data Analysis and Results
5.1. Data Analysis
5.2. Normality Test
5.3. Common Method Bias and Multicollinearity
5.4. Measurement Model Assessment
5.5. Structural Model Assessment
6. Discussion and Implications
6.1. Key Drivers of AI Tool Adoption in Journalism
6.2. Enhancing Sustainable AI Use in Newsrooms
6.3. Foundations for Long-Term AI Integration in Journalism
7. Limitations and Future Directions
7.1. Limitations
7.2. Future Direction
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | References |
Technology affinity (TA) | Trang et al. (2024) |
1. I am very good at using AI technologies. | |
2. I like to experiment with new technologies. | |
3. I don’t regret time to get used to new technologies. | |
4. I didn’t take too much time to master new technologies. | |
Personal trust (PT) | Trang et al. (2024) |
1. I believe in the feasibility of applying artificial intelligence in journalism. | |
2. I believe in the potential of artificial intelligence in journalism. | |
3. I believe I can use artificial intelligence in a pure way. | |
4. I believe that artificial intelligence will make my work more efficient. | |
Ease of use (EU) | Bhagat et al. (2023) |
1. AI-enabled journalism is much easier and simpler. | |
2. AI-enabled journalism increases efficiency. | |
3. AI-enabled journalism provides the best alternatives to choose from. | |
Expectation confirmation (EC) | Al-Sharafi et al. (2023) |
1. My experience with using AI was better than what I expected. | |
2. The service level provided by AI technologies was better than what I expected. | |
3. The benefits of using AI were better than what we expected. | |
4. Overall, most of my expectations from using AI were confirmed. | |
Perceived usefulness (PU) | Khan et al. (2018) |
1. AI technologies are useful for my journalism. | |
2. AI technologies are effective for journalism. | |
3. AI technologies are beneficial for doing journalism. | |
4. AI technologies are quick and convenient for getting information. | |
5. AI technologies are time convenient for journalism. | |
Perceived satisfaction (PS) | Al-Sharafi et al. (2023) |
1. My experience of using AI was very satisfying. | |
2. My experience of using AI was very pleasing. | |
3. My experience of using AI was very contenting. | |
4. My experience of using AI was very delightful. | |
Knowledge sharing (KS) | Al-Sharafi et al. (2023) |
1. AI application allows me to share knowledge with my co-workers. | |
2. AI application supports various types of discussions. | |
3. AI application facilitates the process of knowledge sharing at any time anywhere settings. | |
4. AI application enables me to share different types of resources with my co-workers. | |
5. AI application facilitates the collaborative learning process. | |
Knowledge acquisition (KA) | Al-Sharafi et al. (2023) |
1. AI application facilitates the process of acquiring knowledge from the course material. | |
2. AI application facilitates the process of acquiring knowledge through discussions. | |
3. AI application allows me to generate a new knowledge based on my existing knowledge. | |
4. AI application enables me to acquire the knowledge through various resources. | |
5. AI application assists me to acquire the knowledge that suits my needs. | |
Knowledge application (KAP) | Al-Sharafi et al. (2023) |
1. AI application provides me with instant access to various types of knowledge. | |
2. AI application enables me to apply the knowledge in performing the learning activities. | |
3. AI application allows me to integrate different types of knowledge. | |
4. AI application can help us for better managing the course materials within the journalism industry. | |
Sustainable use (SU) | Al-Sharafi et al. (2023) |
1. I intend to continue using AI rather than discontinue its use. | |
2. I intend to continue using AI than other alternative means. | |
3. If I could, I would like to sustain my use of AI technologies. |
References
- Al-Emran, M., & Mezhuyev, V. (2019, October). Examining the effect of knowledge management factors on mobile learning adoption through the use of importance-performance map analysis (IPMA). In International conference on advanced intelligent systems and informatics (pp. 449–458). Springer International Publishing. [Google Scholar] [CrossRef]
- Al-Emran, M., & Teo, T. (2020). Do knowledge acquisition and knowledge sharing really affect e-learning adoption? An empirical study. Education and Information Technologies, 25(3), 1983–1998. [Google Scholar] [CrossRef]
- Aldás-Manzano, J., Ruiz-Mafé, C., & Sanz-Blas, S. (2009). Exploring individual personality factors as drivers of M-shopping acceptance. Industrial Management & Data Systems, 109(6), 739–757. [Google Scholar] [CrossRef]
- Alqasa, K. M. A. (2023). Impact of artificial intelligence-based marketing on banking customer satisfaction: Examining moderating role of ease of use and mediating role of brand image. Transnational Marketing Journal, 11(1), 167–180. [Google Scholar]
- Al-Rahmi, A. M., Shamsuddin, A., Alturki, U., Aldraiweesh, A., Yusof, F. M., Al-Rahmi, W. M., & Aljeraiwi, A. A. (2021). The influence of information system success and technology acceptance model on social media factors in education. Sustainability, 13(14), 7770. [Google Scholar] [CrossRef]
- Al-Rahmi, W. M., Alzahrani, A. I., Yahaya, N., Alalwan, N., & Kamin, Y. B. (2020). Digital communication: Information and communication technology (ICT) usage for education sustainability. Sustainability, 12(12), 5052. [Google Scholar] [CrossRef]
- Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293. [Google Scholar] [CrossRef]
- Al-Sharafi, M. A., Al-Emran, M., Iranmanesh, M., Al-Qaysi, N., Iahad, N. A., & Arpaci, I. (2023). Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach. Interactive Learning Environments, 31(10), 7491–7510. [Google Scholar] [CrossRef]
- Ambalov, I. A. (2021). An investigation of technology trust and habit in IT use continuance: A study of a social network. Journal of Systems and Information Technology, 23(1), 53–81. [Google Scholar] [CrossRef]
- Arpaci, I., Al-Emran, M., & Al-Sharafi, M. A. (2020). The impact of knowledge management practices on the acceptance of Massive Open Online Courses (MOOCs) by engineering students: A cross-cultural comparison. Telematics and Informatics, 54, 101468. [Google Scholar] [CrossRef]
- Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. [Google Scholar] [CrossRef]
- Barredo Ibáñez, D., Jamil, S., & de la Garza Montemayor, D. J. (2023). Disinformation and artificial intelligence: The case of online journalism in China. Estudios Sobre el Mensaje Periodistico, 29(4), 761–770. [Google Scholar] [CrossRef]
- Barzilai, O., Voloch, N., Hasgall, A., Steiner, O. L., & Ahituv, N. (2018). Traffic control in a smart intersection by an algorithm with social priorities. Contemporary Engineering Sciences, 11(31), 1499–1511. [Google Scholar] [CrossRef]
- Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, 25(2), 249–263. [Google Scholar] [CrossRef]
- Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25, 351–370. [Google Scholar] [CrossRef]
- Broussard, M., Diakopoulos, N., Guzman, A. L., Abebe, R., Dupagne, M., & Chuan, C. H. (2019). Artificial intelligence and journalism. Journalism & Mass Communication Quarterly, 96(3), 673–695. [Google Scholar] [CrossRef]
- Calvo-Rubio, L. M., & Ufarte-Ruiz, M. J. (2021). Artificial intelligence and journalism: Systematic review of scientific production in Web of Science and Scopus (2008–2019). Communication & Society, 34, 159–176. [Google Scholar] [CrossRef]
- Campolo, A., & Crawford, K. (2020). Enchanted determinism: Power without responsibility in artificial intelligence. Engaging Science, Technology, and Society, 6, 1–19. [Google Scholar] [CrossRef]
- Canavilhas, J. (2022). Artificial intelligence and journalism: Current situation and expectations in the Portuguese sports media. Journalism and Media, 3(3), 510–520. [Google Scholar] [CrossRef]
- Chan-Olmsted, S. M. (2019). A review of artificial intelligence adoptions in the media industry. International Journal on Media Management, 21(3–4), 193–215. [Google Scholar] [CrossRef]
- Chen, J. (2022). Adoption of M-learning apps: A sequential mediation analysis and the moderating role of personal innovativeness in information technology. Computers in Human Behavior Reports, 8, 100237. [Google Scholar] [CrossRef]
- Chiu, W., Cho, H., & Chi, C. G. (2021). Consumers’ continuance intention to use fitness and health apps: An integration of the expectation–confirmation model and investment model. Information Technology & People, 34(3), 978–998. [Google Scholar] [CrossRef]
- Chowdhury, S. H., Roy, S. K., Arafin, M., & Siddiquee, S. (2019). Green HR practices and its impact on employee work satisfaction-a case study on IBBL, Bangladesh. International Journal of Research and Innovation in Social Science, Delhi, 3(3), 129–138. [Google Scholar] [CrossRef]
- Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage Publications. [Google Scholar] [CrossRef]
- Cui, D., & Wu, F. (2021). The influence of media use on public perceptions of artificial intelligence in China: Evidence from an online survey. Information Development, 37(1), 45–57. [Google Scholar] [CrossRef]
- Cukurova, M., Bennett, J., & Abrahams, I. (2018). Students’ knowledge acquisition and ability to apply knowledge into different science contexts in two different independent learning settings. Research in Science & Technological Education, 36(1), 17–34. [Google Scholar] [CrossRef]
- Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. [Google Scholar] [CrossRef]
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–340. [Google Scholar] [CrossRef]
- de-Lima-Santos, M. F., & Ceron, W. (2021). Artificial intelligence in news media: Current perceptions and future outlook. Journalism and Media, 3(1), 13–26. [Google Scholar] [CrossRef]
- de-Lima-Santos, M. F., & Mesquita, L. (2021). Data journalism beyond technological determinism. Journalism Studies, 22(11), 1416–1435. [Google Scholar] [CrossRef]
- Diakopoulos, N., & Koliska, M. (2017). Algorithmic transparency in the news media. Digital Journalism, 5(7), 809–828. [Google Scholar] [CrossRef]
- Djakasaputra, A., Pramono, R., & Hulu, E. (2020). Brand image, perceived quality, ease of use, trust, price, service quality on customer satisfaction and purchase intention of Blibli website with digital technology as dummy variable in the use of eviews. Journal of Critical Reviews, 7(11), 3987–4000. [Google Scholar] [CrossRef]
- Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. [Google Scholar] [CrossRef]
- Eren, B. A. (2021). Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. International Journal of Bank Marketing, 39(2), 294–311. [Google Scholar] [CrossRef]
- Farkash, Z. (2018). Higher education chatbot: Chatbots are the future of higher education. Chatbots Life. Available online: https://blog.chatbotslife.com/higher-education-chatbot-chatbots-are-the-future-of-higher-education-51f151e93b02 (accessed on 23 April 2025).
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Feiz, D., Dehghani Soltani, M., & Farsizadeh, H. (2019). The effect of knowledge sharing on the psychological empowerment in higher education mediated by organizational memory. Studies in Higher Education, 44(1), 3–19. [Google Scholar] [CrossRef]
- Forja-Pena, T., García-Orosa, B., & López-García, X. (2024). The ethical revolution: Challenges and reflections in the face of the integration of artificial intelligence in digital journalism. Communication & Society, 37, 237–254. [Google Scholar] [CrossRef]
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [Google Scholar] [CrossRef]
- Foroughi, B., Iranmanesh, M., & Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance usage intention. Journal of Enterprise Information Management, 32(6), 1015–1033. [Google Scholar] [CrossRef]
- Fubini, A. (2022). New powers, new responsibilities. A global survey of journalism and artificial intelligence. Problemi Dell’informazione, 47(2), 297–301. [Google Scholar] [CrossRef]
- García-Sánchez, E., García-Morales, V. J., & Bolívar-Ramos, M. T. (2017). The influence of top management support for ICTs on organisational performance through knowledge acquisition, transfer, and utilisation. Review of Managerial Science, 11, 19–51. [Google Scholar] [CrossRef]
- Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. [Google Scholar] [CrossRef]
- Goni, A., & Tabassum, M. (2020). Artificial Intelligence (AI) in journalism: Is Bangladesh ready for it? A study on journalism students in Bangladesh. Athens Journal of Mass Media and Communications, 6(4), 209–228. [Google Scholar] [CrossRef]
- Gupta, A., Yousaf, A., & Mishra, A. (2020). How pre-adoption expectancies shape post-adoption continuance intentions: An extended expectation-confirmation model. International Journal of Information Management, 52, 102094. [Google Scholar] [CrossRef]
- Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A human–machine communication research agenda. New Media & Society, 22(1), 70–86. [Google Scholar] [CrossRef]
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. [Google Scholar] [CrossRef]
- Islam, S., Hossain, M. S., & Roy, S. K. (2021). Performance evaluation using CAMELS model: A comparative study on private commercial banks in Bangladesh. International Journal for Asian Contemporary Research, 1(4), 170–176. [Google Scholar] [CrossRef]
- Jumaan, I. A., Hashim, N. H., & Al-Ghazali, B. M. (2020). The role of cognitive absorption in predicting mobile internet users’ continuance intention: An extension of the expectation-confirmation model. Technology in Society, 63, 101355. [Google Scholar] [CrossRef]
- Kashyap, A., & Agrawal, R. (2020). Scale development and modeling of intellectual property creation capability in higher education. Journal of Intellectual Capital, 21(1), 115–138. [Google Scholar] [CrossRef]
- Kasinphila, P., Dowpiset, K., & Nuangjamnong, C. (2023). Influence of web design, usefulness, ease of use, and enjoyment on beauty and cosmetics online purchase intention towards a popular brand in Thailand. Research Review, 5(12). [Google Scholar] [CrossRef]
- Kawser, M. S. A. A., Roy, S. K., & Uddin, M. R. (2023). Investigating the influencing factors of study retention for CSE undergraduate students. International Journal of Emerging Technologies and Innovative Research, 10(5), i648–i657. [Google Scholar] [CrossRef]
- Khan, I. U., Hameed, Z., Yu, Y., Islam, T., Sheikh, Z., & Khan, S. U. (2018). Predicting the acceptance of MOOCs in a developing country: Application of task-technology fit model, social motivation, and self-determination theory. Telematics and Informatics, 35(4), 964–978. [Google Scholar] [CrossRef]
- Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544–564. [Google Scholar] [CrossRef]
- Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford Publications. [Google Scholar] [CrossRef]
- Kothari, A., & Cruikshank, S. A. (2022). Artificial intelligence and journalism: An Agenda for journalism research in Africa. African Journalism Studies, 43(1), 17–33. [Google Scholar] [CrossRef]
- Kuai, J., Ferrer-Conill, R., & Karlsson, M. (2022). AI ≥ journalism: How the Chinese copyright law protects tech giants’ AI innovations and disrupts the journalistic institution. Digital Journalism, 10(10), 1893–1912. [Google Scholar] [CrossRef]
- Lee, C. C. (2003). The global and the national of the Chinese media. In Chinese media, global contexts (pp. 1–31). Routledge. [Google Scholar] [CrossRef]
- Lee, C. P., Lee, G. G., & Lin, H. F. (2007). The role of organizational capabilities in successful e-business implementation. Business Process Management Journal, 13(5), 677–693. [Google Scholar] [CrossRef]
- Lee, V.-H., Hew, J.-J., Leong, L.-Y., Tan, G. W.-H., & Ooi, K.-B. (2020). Wearable payment: A deep learning-based dual-stage SEM-ANN analysis. Expert Systems with Applications, 157, 113477. [Google Scholar] [CrossRef]
- Li, C. Y., & Fang, Y. H. (2019). Predicting continuance intention toward mobile branded apps through satisfaction and attachment. Telematics and Informatics, 43, 101248. [Google Scholar] [CrossRef]
- Li, X., Wang, S., Xue, H., Zhao, X., & Huang, J. (2021). Understanding consumers’ continuance intention to use AI-powered services. International Journal of Information Management, 58, 102366. [Google Scholar]
- Lin, C. Y., & Huang, C. K. (2020). Understanding the antecedents of knowledge sharing behaviour and its relationship to team effectiveness and individual learning. Australasian Journal of Educational Technology, 36(2), 89–104. [Google Scholar] [CrossRef]
- Lucero, K. (2019). Artificial intelligence regulation and China’s future. Columbia Journal of Asian Law, 33, 94. [Google Scholar] [CrossRef]
- Mandari, H., & Koloseni, D. (2022). Examining the antecedents of continuance usage of mobile government services in Tanzania. International Journal of Public Administration, 45(12), 917–929. [Google Scholar] [CrossRef]
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. [Google Scholar] [CrossRef]
- Nahar, S., Akter, M., Roy, S. K., & Alim, M. A. (2023). Determining the shortest distance using fuzzy triangular method. Journal for New Zealand Herpetology BioGecko, 12(03), 2188–2194. [Google Scholar] [CrossRef]
- Nguyen, D. M., Chiu, Y. T. H., & Le, H. D. (2021). Determinants of continuance intention towards banks’ chatbot services in Vietnam: A necessity for sustainable development. Sustainability, 13(14), 7625. [Google Scholar] [CrossRef]
- Noain Sánchez, A. (2022). Addressing the impact of artificial intelligence on journalism: The perception of experts, journalists and academics. Communication & Society, 35(3), 105–121. [Google Scholar] [CrossRef]
- Oppong, F. B., & Agbedra, S. Y. (2016). Assessing univariate and multivariate normality: A guide for non-statisticians. Mathematical Theory and Modeling, 6(2), 26–33. [Google Scholar] [CrossRef]
- Parratt-Fernández, S., Mayoral-Sánchez, J., & Mera-Fernández, M. (2021). The application of artificial intelligence to journalism: An analysis of academic production. Profesional de la información, 30(3). [Google Scholar] [CrossRef]
- Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 78(1), 84–93. [Google Scholar] [CrossRef]
- Pereira, R., & Tam, C. (2021). Impact of enjoyment on the usage continuance intention of video-on-demand services. Information & Management, 58(7), 103501. [Google Scholar] [CrossRef]
- Pérez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6), 1549–1565. [Google Scholar] [CrossRef]
- Pham, C. T., & Nguyet, T. T. T. (2023). Determinants of blockchain adoption in news media platforms: A perspective from the Vietnamese press industry. Heliyon, 9(1), e12747. [Google Scholar] [CrossRef]
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879. [Google Scholar] [CrossRef]
- Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality & Reliability Management, 38(4), 986–1004. [Google Scholar] [CrossRef]
- Rodgers, W., Yeung, F., Odindo, C., & Degbey, W. Y. (2021). Artificial intelligence-driven music biometrics influencing customers’ retail buying behavior. Journal of Business Research, 126, 401–414. [Google Scholar] [CrossRef]
- Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Avramov, K., Chernobryvko, M., Yanchevskyi, I., Mozgova, I., & Bennell, J. (2021). Optimal layout of ellipses and its application for additive manufacturing. International Journal of Production Research, 59(2), 560–575. [Google Scholar] [CrossRef]
- Roy, S. K., Musfika, M., & Habiba, U. (2024). Moderated mediating effect on undergraduates’ mobile social media addiction: A three-stage analytical approach. Journal of Technology in Behavioral Science, 1–20. [Google Scholar] [CrossRef]
- Saeidnia, H. R., Hosseini, E., Lund, B., Tehrani, M. A., Zaker, S., & Molaei, S. (2025). Artificial intelligence in the battle against disinformation and misinformation: A systematic review of challenges and approaches. Knowledge and Information Systems, 104, 9–17. [Google Scholar] [CrossRef]
- Sharma, H., & Bhardwaj, S. K. (2024). Ethical explorations: AI’s role in shaping the journalism ecosystem across Asia. New Global Studies, 18(2), 201–209. [Google Scholar] [CrossRef]
- Sheth, A., Yip, H. Y., Iyengar, A., & Tepper, P. (2019). Cognitive services and intelligent chatbots: Current perspectives and special issue introduction. IEEE Internet Computing, 23(2), 6–12. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y., & Lin, S. (2024). How generative AI is transforming journalism: Development, application and ethics. Journalism and Media, 5, 582–594. [Google Scholar] [CrossRef]
- Shin, D., Chotiyaputta, V., & Zaid, B. (2022). The effects of cultural dimensions on algorithmic news: How do cultural value orientations affect how people perceive algorithms? Computers in Human Behavior, 126, 107007. [Google Scholar] [CrossRef]
- Stanciu, V., & Rîndaşu, S.-M. (2021). Artificial Intelligence in retail: Benefits and risks associated with mobile shopping applications. Amfiteatru Economic, 23(56), 46–64. [Google Scholar] [CrossRef]
- Stojanović, M., Radenković, M., Popović, S., Mitrović, S., & Bogdanović, Z. (2023). A readiness assessment framework for the adoption of 5G based smart-living services. Information Systems and e-Business Management, 21(2), 389–413. [Google Scholar] [CrossRef]
- Stray, J. (2021). Making artificial intelligence work for investigative journalism. In Algorithms, automation, and news (pp. 97–118). Routledge. [Google Scholar] [CrossRef]
- Sun, M., Hu, W., & Wu, Y. (2024). Public perceptions and attitudes towards the application of artificial intelligence in journalism: From a China-based survey. Journalism Practice, 18(3), 548–570. [Google Scholar] [CrossRef]
- Trang, T. T. N., Chien Thang, P., Hai, L. D., Phuong, V. T., & Quy, T. Q. (2024). Understanding the adoption of artificial intelligence in journalism: An empirical study in Vietnam. SAGE Open, 14(2), 21582440241255241. [Google Scholar] [CrossRef]
- Trautwein, S., Lindenmeier, J., & Arnold, C. (2021). The effects of technology affinity, prior customer journey experience, and brand familiarity on the acceptance of smart service innovations. SMR-Journal of Service Management Research, 5(1), 36–49. [Google Scholar] [CrossRef]
- Túñez-López, J. M., Fieiras-Ceide, C., & Vaz-Álvarez, M. (2021). Impact of Artificial Intelligence on Journalism: Transformations in the company, products, contents and professional profile. Communication & Society, 34(1), 177–193. [Google Scholar] [CrossRef]
- Upadhyaya, N. (2024). Artificial intelligence in web development: Enhancing automation, personalization, and decision-making. Artificial Intelligence, 4(1), 534–540. [Google Scholar] [CrossRef]
- Vázquez-Cano, E., Mengual-Andrés, S., & López-Meneses, E. (2021). Chatbot to improve learning punctuation in Spanish and to enhance open and flexible learning environments. International Journal of Educational Technology in Higher Education, 18, 1–20. [Google Scholar] [CrossRef]
- Wang, J., Li, X., Wang, P., Liu, Q., Deng, Z., & Wang, J. (2021). Research trend of the unified theory of acceptance and use of technology theory: A bibliometric analysis. Sustainability, 14(1), 10. [Google Scholar] [CrossRef]
- Wang, Z., Huang, D., Cui, J., Zhang, X., Ho, S. B., & Cambria, E. (2025). A review of Chinese sentiment analysis: Subjects, methods, and trends. Artificial Intelligence Review, 58(3), 75. [Google Scholar] [CrossRef]
- Winkler, R., & Söllner, M. (2018, July). Unleashing the potential of chatbots in education: A state-of-the-art analysis. In Academy of management proceedings (Vol. 2018, No. 1, p. 15903). Academy of Management. [Google Scholar] [CrossRef]
- Wu, E. H. K., Lin, C. H., Ou, Y. Y., Liu, C. Z., Wang, W. K., & Chao, C. Y. (2020). Advantages and constraints of a hybrid model K-12 E-Learning assistant chatbot. IEEE Access, 8, 77788–77801. [Google Scholar] [CrossRef]
- Xu, J. (2024). Opening the ‘black box’ of algorithms: Regulation of algorithms in China. Communication Research and Practice, 10(3), 288–296. [Google Scholar] [CrossRef]
- Yan, M., Filieri, R., Raguseo, E., & Gorton, M. (2021). Mobile apps for healthy living: Factors influencing continuance intention for health apps. Technological Forecasting and Social Change, 166, 120644. [Google Scholar] [CrossRef]
- Yu, Y., & Huang, K. (2021). Friend or foe? Human journalists’ perspectives on artificial intelligence in Chinese media outlets. Chinese Journal of Communication, 14(4), 409–429. [Google Scholar] [CrossRef]
- Zhang, W., Zhang, W., Wang, C., & Daim, T. U. (2022). What drives continuance intention of disruptive technological innovation? The case of e-business microcredit in China. Technology Analysis & Strategic Management, 34(8), 905–918. [Google Scholar] [CrossRef]
- Zhao, Y. (2012). Understanding China’s media system in a world historical context. In Comparing media systems beyond the Western world (pp. 143–176). Cambridge University Press. [Google Scholar] [CrossRef]
- Zheng, Y., Zhong, B., & Yang, F. (2018). When algorithms meet journalism: The user perception to automated news in a cross-cultural context. Computers in Human Behavior, 86, 266–275. [Google Scholar] [CrossRef]
- Zhu, Y. Q., Azizah, A. H., & Hsiao, B. (2021). Examining multi-dimensional trust of technology in citizens’ adoption of e-voting in developing countries. Information Development, 37(2), 193–208. [Google Scholar] [CrossRef]
Measurements | Categories | Frequency | Percent |
---|---|---|---|
Gender | Male | 154 | 38.9 |
Female | 242 | 61.1 | |
Age (in years) | 18–25 | 66 | 16.7 |
26–30 | 125 | 31.6 | |
31–40 | 85 | 21.5 | |
41–50 | 73 | 18.4 | |
51–60 | 38 | 9.6 | |
Over 60 | 9 | 2.3 | |
Service length (in years) | 1–5 | 112 | 28.3 |
6–10 | 93 | 23.5 | |
11–15 | 41 | 10.4 | |
16–20 | 45 | 11.4 | |
21–25 | 31 | 7.8 | |
26–30 | 36 | 9.1 | |
Above 30 | 38 | 9.6 | |
AI using experience (in years) | 1 | 74 | 18.7 |
2 | 140 | 35.4 | |
3 | 134 | 33.8 | |
4 | 45 | 11.4 | |
5 | 2 | 0.5 | |
6 | 1 | 0.3 | |
AI adoption in working | Text to Speech and Speech to Text | 100 | 25.3 |
Content editing | 106 | 26.8 | |
Content creation | 120 | 30.3 | |
Video, Image, and text processing | 61 | 15.4 | |
Others | 9 | 2.3 |
Constructs | Items | λ | α | CR | AVE | VIF (Outer Model) |
---|---|---|---|---|---|---|
Expectation Confirmation (EC) | EC1 | 0.891 | 0.902 | 0.903 | 0.772 | 2.791 |
EC2 | 0.898 | 2.938 | ||||
EC3 | 0.872 | 2.498 | ||||
EC4 | 0.855 | 2.231 | ||||
Knowledge Acquisition (KA) | KA1 | 0.821 | 0.899 | 0.900 | 0.713 | 2.393 |
KA2 | 0.880 | 2.826 | ||||
KA3 | 0.878 | 2.908 | ||||
KA4 | 0.830 | 2.243 | ||||
KA5 | 0.811 | 2.148 | ||||
Knowledge Application (KAP) | KAP1 | 0.890 | 0.900 | 0.903 | 0.768 | 2.934 |
KAP2 | 0.874 | 2.736 | ||||
KAP3 | 0.893 | 2.905 | ||||
KAP4 | 0.848 | 2.034 | ||||
Knowledge Sharing (KS) | KS1 | 0.876 | 0.920 | 0.920 | 0.757 | 2.893 |
KS2 | 0.875 | 2.901 | ||||
KS3 | 0.866 | 2.839 | ||||
KS4 | 0.864 | 2.760 | ||||
KS5 | 0.870 | 2.857 | ||||
Perceived Ease of Use (PEU) | PEU1 | 0.910 | 0.891 | 0.894 | 0.821 | 2.902 |
PEU2 | 0.898 | 2.309 | ||||
PEU3 | 0.910 | 2.858 | ||||
Perceived Satisfaction (PS) | PS1 | 0.879 | 0.892 | 0.894 | 0.755 | 2.514 |
PS2 | 0.875 | 2.843 | ||||
PS3 | 0.851 | 2.214 | ||||
PS4 | 0.870 | 2.690 | ||||
Personal Trust (PT) | PT1 | 0.839 | 0.838 | 0.846 | 0.672 | 1.834 |
PT2 | 0.818 | 1.849 | ||||
PT3 | 0.793 | 1.762 | ||||
PT4 | 0.827 | 1.932 | ||||
Perceived Usefulness (PU) | PU1 | 0.867 | 0.904 | 0.905 | 0.724 | 2.978 |
PU2 | 0.862 | 2.824 | ||||
PU3 | 0.851 | 2.414 | ||||
PU4 | 0.847 | 2.403 | ||||
PU5 | 0.825 | 2.140 | ||||
Sustainable Use (SU) | SU1 | 0.914 | 0.898 | 0.900 | 0.831 | 2.738 |
SU2 | 0.910 | 2.823 | ||||
SU3 | 0.910 | 2.735 | ||||
Technology Affinity (TA) | TA1 | 0.853 | 0.895 | 0.895 | 0.760 | 2.277 |
TA2 | 0.891 | 2.824 | ||||
TA3 | 0.889 | 2.749 | ||||
TA4 | 0.855 | 2.293 |
Fornell-Larcker Scores | EC | KA | KAP | KS | PEU | PS | PT | PU | SU | TA |
---|---|---|---|---|---|---|---|---|---|---|
EC | 0.88 | |||||||||
KA | 0.67 | 0.84 | ||||||||
KAP | 0.64 | 0.62 | 0.88 | |||||||
KS | 0.59 | 0.66 | 0.67 | 0.87 | ||||||
PEU | 0.61 | 0.69 | 0.57 | 0.61 | 0.91 | |||||
PS | 0.57 | 0.62 | 0.58 | 0.63 | 0.61 | 0.87 | ||||
PT | 0.53 | 0.50 | 0.35 | 0.36 | 0.53 | 0.52 | 0.82 | |||
PU | 0.67 | 0.64 | 0.69 | 0.65 | 0.63 | 0.61 | 0.46 | 0.85 | ||
SU | 0.75 | 0.72 | 0.69 | 0.73 | 0.70 | 0.69 | 0.54 | 0.75 | 0.91 | |
TA | 0.56 | 0.56 | 0.45 | 0.53 | 0.54 | 0.61 | 0.48 | 0.58 | 0.64 | 0.87 |
HTMT ratios | ||||||||||
EC | ||||||||||
KA | 0.74 | |||||||||
KAP | 0.71 | 0.69 | ||||||||
KS | 0.65 | 0.72 | 0.73 | |||||||
PEU | 0.68 | 0.77 | 0.63 | 0.66 | ||||||
PS | 0.63 | 0.69 | 0.64 | 0.70 | 0.68 | |||||
PT | 0.61 | 0.57 | 0.39 | 0.41 | 0.61 | 0.60 | ||||
PU | 0.74 | 0.70 | 0.76 | 0.72 | 0.69 | 0.68 | 0.52 | |||
SU | 0.83 | 0.79 | 0.76 | 0.80 | 0.78 | 0.77 | 0.61 | 0.83 | ||
TA | 0.62 | 0.63 | 0.50 | 0.58 | 0.60 | 0.68 | 0.55 | 0.65 | 0.71 |
Hypotheses | Paths | β | t-Values | p-Values | UL | LL | Supported | VIF |
---|---|---|---|---|---|---|---|---|
H1 | EC → PU | 0.666 | 15.462 | 0.000 | 0.574 | 0.742 | Yes | 1.000 |
H2 | EC → PS | 0.177 | 2.660 | 0.008 | 0.042 | 0.304 | Yes | 2.032 |
H3 | PU → PS | 0.305 | 4.840 | 0.000 | 0.179 | 0.426 | Yes | 2.079 |
H4 | PU → SU | 0.221 | 4.985 | 0.000 | 0.136 | 0.309 | Yes | 2.650 |
H5 | PS → SU | 0.098 | 2.252 | 0.024 | 0.016 | 0.186 | Yes | 2.381 |
H6 | KS → SU | 0.201 | 5.093 | 0.000 | 0.125 | 0.279 | Yes | 2.542 |
H7 | KA → SU | 0.112 | 2.755 | 0.006 | 0.032 | 0.190 | Yes | 2.637 |
H8 | KAP → SU | 0.121 | 2.913 | 0.004 | 0.037 | 0.201 | Yes | 2.410 |
H9 | PEU → PS | 0.306 | 6.056 | 0.000 | 0.204 | 0.405 | Yes | 1.854 |
H10 | PEU → SU | 0.117 | 2.911 | 0.004 | 0.036 | 0.194 | Yes | 2.414 |
H11 | PT → SU | 0.099 | 3.157 | 0.002 | 0.038 | 0.161 | Yes | 1.623 |
H12 | TA → SU | 0.114 | 3.101 | 0.002 | 0.045 | 0.189 | Yes | 1.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, H. Unveiling the Mechanics of AI Adoption in Journalism: A Multi-Factorial Exploration of Expectation Confirmation, Knowledge Management, and Sustainable Use. Journal. Media 2025, 6, 65. https://doi.org/10.3390/journalmedia6020065
Li F, Wang H. Unveiling the Mechanics of AI Adoption in Journalism: A Multi-Factorial Exploration of Expectation Confirmation, Knowledge Management, and Sustainable Use. Journalism and Media. 2025; 6(2):65. https://doi.org/10.3390/journalmedia6020065
Chicago/Turabian StyleLi, Fangni, and Hongyu Wang. 2025. "Unveiling the Mechanics of AI Adoption in Journalism: A Multi-Factorial Exploration of Expectation Confirmation, Knowledge Management, and Sustainable Use" Journalism and Media 6, no. 2: 65. https://doi.org/10.3390/journalmedia6020065
APA StyleLi, F., & Wang, H. (2025). Unveiling the Mechanics of AI Adoption in Journalism: A Multi-Factorial Exploration of Expectation Confirmation, Knowledge Management, and Sustainable Use. Journalism and Media, 6(2), 65. https://doi.org/10.3390/journalmedia6020065