The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage †
Abstract
:1. Introduction
2. Apple Pomace as Biosorbent
3. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Król, S.; Nawirska, A. Usuwanie jonów metali ciężkich na wytłokach owocowych w układach dynamicznych. Technol. Aliment. 2003, 2, 21–29. [Google Scholar]
- Dudczak, J.; Kalak, T.; Cierpiszewski, R. Usuwanie jonów Cu(II) z roztworów wodnych przy pomocy wytłoków z czarnego bzu. In Zagospodarowanie Ubocznych Produktów Przemysłu Spożywczego; Wydział Nauk o Żywności i Żywieniu, Uniwersytet Przyrodniczy w Poznaniu: Poznań, Poland, 2016; pp. 57–64. [Google Scholar]
- Zolfaghari, G.; Esmaili-Sari, A.; Anbia, M.; Younesi, H.; Amirmahmoodi, S.; Ghafari-Nazari, A. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J. Hazard. Mater. 2011, 192, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, W.; Kaewsarn, P. Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions. World Acad. Sci. Eng. Technol. 2009, 56, 287–291. [Google Scholar]
- Torres, E. Biosorption: A review of the latest advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Chand, P.; Pakade, Y.B. Removal of Pb from water by adsorption on apple pomace: Equilibrium, kinetics, and thermodynamics studies. J. Chem. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Yatim, N.I.; Ariffin, M.M.; Hamzah, S. Removal of heavy metals using self-integrating bio-adsorbent from agricultural by-products and marine waste materials. Desalin. Water Treat. 2018, 118, 216–229. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Pakade, Y.B. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environ. Sci. Pollut. Res. 2015, 22, 10919–10929. [Google Scholar] [CrossRef] [PubMed]
- Dakroury, G.A.; Abo-Zahra, S.F.; Hassan, H.S. Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arab. J. Chem. 2020, 13, 6510–6522. [Google Scholar] [CrossRef]
- Mahamadi, C. Will nano-biosorbents break the Achilles’ heel of biosorption technology? Environ. Chem. Lett. 2019, 17. [Google Scholar] [CrossRef]
- Chand, P.; Bokare, M.; Pakade, Y.B. Methyl acrylate modified apple pomace as promising adsorbent for the removal of divalent metal ion from industrial wastewater. Environ. Sci. Pollut. Res. 2017, 24, 10454–10465. [Google Scholar] [CrossRef] [PubMed]
- Jangde, V.; Umathe, P.; Antony, P.S.; Shinde, V.; Pakade, Y. Fixed-bed column dynamics of xanthate-modified apple pomace for removal of Pb(II). Int. J. Environ. Sci. Technol. 2019, 16, 6347–6356. [Google Scholar] [CrossRef]
Sorbent/Sorption Method | Metal | Sorption Parameters | Maximum Adsorption Capacity | Adsorption Model | Kinetic Model | Ref. |
---|---|---|---|---|---|---|
Apple pomace/batch | Zn(II) | C = 6 mg/L Zn2+ | 0.12 mg/g | n.d. | n.d. | [1] |
Cu(II) | C = 8 mg/L Cu2+ | 0.27 mg/g | ||||
Pb(II) | C = 10 mg/L Pb2+ | 0.20 mg/g | ||||
Cd(II) | C = 4 mg/L Cd2+ | 0.11 mg/g | ||||
Apple pomace/batch | Pb(II) | 0.8 g AP pH = 4 80 min | 16.39 mg/g | Langmuir | Pseudo-second order | [6] |
16.14 mg/g | Freundlich | |||||
Hydroxyapatite nanoparticles impregnated on apple pomace/batch | Pb(II) | 0.02 g HANP@AP pH = 5 C = 100 mg/L Pb2+ | 303 mg/g | Langmuir | Pseudo-second order | [10] |
Cd(II) | 0.04 g HANP@AP pH = 5 C = 100 mg/L Cd2+ | 250 mg/g | ||||
Ni(II) | 0.06 g HANP@AP pH = 5 C = 80 mg/L Ni2+ | 100 mg/g | ||||
Methyl acrylate modified apple pomace/batch | Pb(II) | 0.2 g AP C = 50 mg/L Pb2+ | 106 mg/g | Langmuir | Pseudo-second order | [13] |
Cd(II) | 0.2 g AP C = 50 mg/L Cd2+ | 34.12 mg/g | ||||
Ni(II) | 0.4 g AP C = 50 mg/L Ni2+ | 19.45 mg/g | ||||
Xanthate-modified apple pomace/fixed-bed column | Pb(II) | C = 30 mg/L Pb2+ | 160 mg/g | Thomas | Second-order | [14] |
C = 40 mg/L Pb2+ | 165 mg/g | |||||
C = 50 mg/L Pb2+ | 177 mg/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryko, K.; Kalinowska, M.; Świderski, G. The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage. Environ. Sci. Proc. 2021, 9, 24. https://doi.org/10.3390/environsciproc2021009024
Gryko K, Kalinowska M, Świderski G. The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage. Environmental Sciences Proceedings. 2021; 9(1):24. https://doi.org/10.3390/environsciproc2021009024
Chicago/Turabian StyleGryko, Kamila, Monika Kalinowska, and Grzegorz Świderski. 2021. "The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage" Environmental Sciences Proceedings 9, no. 1: 24. https://doi.org/10.3390/environsciproc2021009024