The Bayankhongor Metal Belt (Mongolia): Constraints on Crustal Architecture and Implications for Mineral Emplacement from 3-D Electrical Resistivity Models †
Abstract
:1. Introduction
2. Method
3. Results
4. Discussion
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Davies, S.; Groves, D.I.; Trench, A.; Dentith, M. Towards producing mineral resource-potential maps within a mineral systems framework, with emphasis on Australian orogenic gold systems. Ore Geol. Rev. 2020, 119, 103369. [Google Scholar] [CrossRef]
- Heinson, G.S.; Direen, N.G.; Gill, R.M. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 2006, 34, 573–576. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Goldfarb, R.J.; Zhang, L. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geosci. Front. 2018, 9, 1163–1177. [Google Scholar] [CrossRef]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Buchan, C.; Cunningham, D.; Windley, B.F.; Tomurhuu, D. Structural and lithological characteristics of the Bayankhongor Ophiolite Zone, Central Mongolia. J. Geol. Soc. 2001, 158, 445–460. [Google Scholar] [CrossRef]
- Walker, R.T.; Nissen, E.; Molor, E.; Bayasgalan, A. Reinterpretation of the active faulting in central Mongolia. Geology 2007, 35, 759–762. [Google Scholar] [CrossRef]
- Osozawaa, S.; Tsolmon, G.; Majigsuren, U.; Sereenen, J.; Niitsuma, S.; Iwata, N.; Pavlis, T.; Jahn, B. Structural evolution of the Bayanhongor region, west-central Mongolia. J. Asian Earth Sci. 2008, 33, 337–352. [Google Scholar] [CrossRef]
- Gerel, O.; Pirajno, F.; Batkhishig, B.; Dosta, J. Mineral Resources of Mongolia, Modern Approaches in Solid Earth Sciences; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Watanabe, J.; Turmagnai, D.; Byambasuren, D.; Oyunchimeg, G.; Tsedenbaljir, Y.; Sato, Y. Geology and K-Ar Ages of the South, Huh Bulgiin Hundii, Saran Uul, Taats Gol and Han Uul deposits in the Bayankhongor Region, Mongolia. Resour. Geol. 1999, 49, 123–130. [Google Scholar] [CrossRef]
- Comeau, M.J.; Käufl, J.S.; Becken, M.; Kuvshinov, A.V.; Grayver, A.V.; Kamm, J.; Demberel, S.; Sukhbaatar, U.; Batmagnai, E. Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia. Earth Planet. Sci. Lett. 2018, 487, 201–209. [Google Scholar] [CrossRef]
- Käufl, J.S.; Grayver, A.V.; Comeau, M.J.; Kuvshinov, A.V.; Becken, M.; Batmagnai, E.; Demberel, S. Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia. Geophys. J. Int. 2020, 221, 1002–1028. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Käufl, J.S.; Grayver, A.V.; Kuvshinov, A.V.; Tserendug, S.; Batmagnai, E.; Demberel, S. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect. Earth Planets Space 2020, 72. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Connolly, J.A.D.; Grayver, A.V.; Kuvshinov, A.V. Compaction-driven fluid localization as an explanation for lower crustal electrical conductors in an intracontinental setting. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Käufl, J.S.; Kuvshinov, A.V.; Demberel, S. Images of intraplate volcanism: The upper crustal structure below Tariat volcanic zone, Mongolia, imaged with magnetotellurics. In Proceedings of the EGU General Assembly, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Becker, F.; Stein, C.; Comeau, M.J.; Becken, M.; Hansen, U. Modelling delamination as a process of lithosphere thinning determined by magnetotelluric measurements. In Proceedings of the 28th Schmucker-Weidelt Colloquium for Electromagnetic Depth Research, Haltern am See, Germany, 23–27 September 2019. [Google Scholar]
- Comeau, M.J.; Stein, C.; Becken, M.; Hansen, U. Geodynamic Modeling of Lithospheric Removal and Surface Deformation: Application to Intraplate Uplift in Central Mongolia. J. Geophys. Res. Solid Earth 2021, 126. [Google Scholar] [CrossRef]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A modular system for inversion of 854 electromagnetic geophysical data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Egbert, G.D.; Kelbert, A. Computational Recipes for Electromagnetic Inverse Problem. Geophys. J. Int. 2012, 189, 251–267. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Kuvshinov, A.; Demberel, S. Crustal architecture of a metallogenic belt and ophiolite belt: Implications for mineral genesis and emplacement from 3-D electrical resistivity models (Bayankhongor area, Mongolia). Earth Planets Space 2021, 73. [Google Scholar] [CrossRef]
- Jargalan, S.; Fujimaki, H.; Ohba, T. Petrologic characteristics and Rb-Sr age dating of lamprophyte dikes of Tsagaan Tsahir Uul gold deposit, Mongolia. J. Mineral. Petrol. Sci. 2007, 102, 163–173. [Google Scholar] [CrossRef]
- Motta, J.G.; Betts, P.G.; de Souza Filho, C.R.; Thiel, S.; Curtis, S.; Armit, R.J. Proxies for Basement Structure and Its Implications for Mesoproterozoic Metallogenic Provinces in the Gawler Craton. J. Geophys. Res. Solid Earth 2019, 124, 3088–3104. [Google Scholar] [CrossRef]
- Drummond, B.J.; Hobbs, B.E.; Goleby, B.R. The role of crustal fluids in the tectonic evolution of the Eastern Goldfields Province of the Archaean Yilgarn Craton, Western Australia. Earth Planets Space 2004, 56, 1163–1169. [Google Scholar] [CrossRef]
- Becken, M.; Kuvshinov, A.V.; Comeau, M.J.; Käufl, J. Magnetotelluric Study of the Hangai Dome, Mongolia. GFZ Data Serv. 2021. [Google Scholar] [CrossRef]
- Becken, M.; Kuvshinov, A.V.; Comeau, M.J.; Käufl, J. Magnetotelluric Study of the Hangai Dome, Mongolia: Phase II. GFZ Data Serv. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comeau, M.J.; Becken, M.; Kuvshinov, A.V.; Demberel, S.; Batmagnai, E.; Tserendug, S. The Bayankhongor Metal Belt (Mongolia): Constraints on Crustal Architecture and Implications for Mineral Emplacement from 3-D Electrical Resistivity Models. Environ. Sci. Proc. 2021, 6, 32. https://doi.org/10.3390/iecms2021-09360
Comeau MJ, Becken M, Kuvshinov AV, Demberel S, Batmagnai E, Tserendug S. The Bayankhongor Metal Belt (Mongolia): Constraints on Crustal Architecture and Implications for Mineral Emplacement from 3-D Electrical Resistivity Models. Environmental Sciences Proceedings. 2021; 6(1):32. https://doi.org/10.3390/iecms2021-09360
Chicago/Turabian StyleComeau, Matthew J., Michael Becken, Alexey V. Kuvshinov, Sodnomsambuu Demberel, Erdenechimeg Batmagnai, and Shoovdor Tserendug. 2021. "The Bayankhongor Metal Belt (Mongolia): Constraints on Crustal Architecture and Implications for Mineral Emplacement from 3-D Electrical Resistivity Models" Environmental Sciences Proceedings 6, no. 1: 32. https://doi.org/10.3390/iecms2021-09360
APA StyleComeau, M. J., Becken, M., Kuvshinov, A. V., Demberel, S., Batmagnai, E., & Tserendug, S. (2021). The Bayankhongor Metal Belt (Mongolia): Constraints on Crustal Architecture and Implications for Mineral Emplacement from 3-D Electrical Resistivity Models. Environmental Sciences Proceedings, 6(1), 32. https://doi.org/10.3390/iecms2021-09360