Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport †
Abstract
:1. Introduction
- Influence of the North Atlantic Subtropical Anticyclone with trough medium and high levels;
- Influence of the North Atlantic Subtropical Anticyclone in the entire tropospheric column;
- Migratory anticyclones;
- Tropical waves into the south of western Cuba.
- Cold fronts on western Cuba.
2. Materials and Methods
2.1. Numerical Experiments
2.1.1. Model and Domain Configuration
2.1.2. Experimental Design
2.2. Data and Methodology
2.2.1. Data
2.2.2. Postprocessing WRF-ARW Output Files
- T = temperature (K);
- p = pressure (Pa);
- q = specific humidity or the mass mixing ratio of water vapor to total air (dimensionless);
- T0 = reference temperature (typically 273.16 K) (K).
2.2.3. Evaluation
3. Results and Discussion
3.1. Convective Storm Analysis
3.2. Wind Field Simulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boilley, A.; Mahouf, J.-F; Lac, C. High resolution numerical modeling of low level wind-shear over the Nice-Ĉote d’ Azur Airport. In Proceedings of the 13th AMS Conference on Mountain Meteorology, Whistler, BC, Canada, 11–15 August 2018; pp. 11–15. [Google Scholar]
- Shaw, B.; Spencer, P.; Carpenter, J.; Barrere, J. Implementation of the WRF model for the Dubai International Airport aviation weather decision support system. In Proceedings of the 13th Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, USA, 2008. 5.2. [Google Scholar]
- Urlea, A.-D.; Pietrisi, M. Study of the Low Level Wind Shear using AMDAR reports. J. Geophys. Res. 2015, 17, 2015–2185. [Google Scholar]
- Hon, K.-K. Predicting Low-Level Wind Shear Using 200-m-Resolution NWP at the Hong Kong International Airport. J. Appl. Meteorol. Clim. 2020, 59, 193–206. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Grill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech Note NCAR/TN 475 STR; UCAR Communications: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Shamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; NCAR Tech Note NCAR/TN 468 STR; National Center for Atmosferic Research: Boulder, CO, USA, 2005. [Google Scholar]
- Chan, P.W.; Hon, K.K. Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies. Meteorol. Appl. 2015, 23, 101–114. [Google Scholar] [CrossRef]
- Hon, K.K. Simulated satellite imagery at sub-kilometre resolution by the Hong Kong Observatory. Weather 2018, 73, 139–144. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Venkatesan, R.; Bagavath Singh, A. Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization. Atmos. Environ. 2007, 41, 2534–2548. [Google Scholar] [CrossRef]
- Miao, J.-F.; Wyser, K.; Chen, D.; Ritchie, H. Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Ann. Geophys. 2009, 27, 2303–2320. [Google Scholar] [CrossRef]
- Storm, B.; Basu, S. The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains. Energies 2010, 3, 258–276. [Google Scholar] [CrossRef]
- Hu, X.-M.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteorol. Clim. 2010, 49, 1831–1844. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ. Model. Softw. 2012, 33, 23–34. [Google Scholar] [CrossRef]
- Hu, X.-M.; Klein, P.M.; Xue, M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos. 2013, 118. [Google Scholar] [CrossRef]
- García-Diez, M.; Fernández, J.; Fitaand, L.; Yague, C. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc. 2013, 139, 501–514. [Google Scholar] [CrossRef]
- Madala, S.; Satyanarayana, A.; Rao, T.N. Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility—Case study. Atmospheric Res. 2014, 139, 1–17. [Google Scholar] [CrossRef]
- Boadh, R.; Satyanarayana, A.; Krishna, T.V.B.P.S.R.; Madala, S. Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station. Atmósfera 2016, 29, 61–81. [Google Scholar] [CrossRef]
- Sierra, M.; Borrajero, L.; Ferrer, A. L.; Morfa, Y.; Yordanis, A.; Loyola, M.; Hinojosa, M. Sensitivity studies of the SisPI to changes in the PBL, the number of vertical levels and the microphysics and clusters parameterizations, at very high resolution. Tech. Sci. Rep. 2017. [CrossRef]
- Sánchez, E.O. Evaluation of the medium-term forecast of the atmospheric component of the SPNOA with data from INSMET meteorological stations. Bachelor’s Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba, 2018. [Google Scholar]
- Sierra, L.M.; Ferrer HA, L.; Valdés, R.; Mayor, G.Y.; Cruz RR, C.; Borrajero, M.I.; Rodríguez GC, F.; Rodríguez, N.; Roque, A. Automatic mesoscale prediction system of four daily cycles. Tech. Sci. Rep. 2015. [CrossRef]
- Pérez-Bello, A.; Mitrani, A.I.; Díaz, R.O.; Wettre, C.; Robert, L.H. A numerical prediction system combining ocean, waves and atmosphere models in the Inter-American Seas and Cuba. Rev. Cub. Meteor. 2019, 25, 109–120. [Google Scholar]
- Díaz-Zurita, A.; Góngora-González, C.M; Lobaina-La, O.A.; Pérez-Alarcón, A.; Coll-Hidalgo, P. Numerical mesoscale and short-term wind forecast for the “José Martí” International Airport of Havana. J. Braz. Meteor. in press.
- Grillo, N. The fog at the “José Martí” International Airport, its relationship with events and meteorological variables. Bachelor’s Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba, 2013. [Google Scholar]
- Sosa, A. International Airport “José Martí” low-level wind shear characteristics during 2012–2017 period. Bachelor’s Thesis, Higher Institute of Technologies and Applied Sciences, Havana, Cuba, 2018. [Google Scholar]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.B.; Rao, T.N.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann. Geophys. 2010, 28, 603–619. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Khain, A.P. A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation. J. Atmospheric Sci. 2012, 69, 504–520. [Google Scholar] [CrossRef]
- Halder, M.; Hazra, A.; Mukhopadhyay, P.; Siingh, D. Effect of the better representation of the cloud ice-nucleation in WRF microphysics schemes: A case study of a severe storm in India. Atmospheric Res. 2015, 154, 155–174. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Connolly, P.J.; Gallagher, M.W. Sensitivity of WRF Cloud Microphysics to Simulations of a Convective Storm over the Nepal Himalayas. Open Atmos. Sci. J. 2017, 11, 29–43. [Google Scholar] [CrossRef]
- Sari, F.P.; Baskoro, A.P.; Hakim, O.S. Effect of different microphysics scheme on WRF model: A simulation of hail event study case in Surabaya, Indonesia. AIP Conf. Proc. 2018, 1987, 020002. [Google Scholar] [CrossRef]
- Dudhia, J.; Wang, J. WRF Advanced Usage and Best Practices. In Proceedings of the 16th WRF Annual Workshop, Boulder, CO, USA, 10–11 June 2014; Available online: https://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/best_prac_wrf.pdf (accessed on 8 July 2020).
- Barcía, S.; Ballester, M.; Cedeño, Y.; García, E.; González, J.; Regueira, V. Time-space variability of the variables that intervene in short-term forecasts in Cuba. Technical Scientific Report of the Institutional Project: Evaluation of weather forecasts, 2012, 36–45, Instituto de Meteorología de la República de Cuba, Havana, Cuba.
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Space Phys. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12 January 2004; pp. 11–15. [Google Scholar]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chem. Phys. Discuss. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Janjić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note o. 437, 2002. Available online: https://repository.library.noaa.gov/view/noaa/11409 (accessed on 8 July 2020).
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. J. Amer. Met. Soc. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, K.-S.S.; Lee, Y.-H.; Ha, J.-C.; Kim, H.-W.; Ham, S.-J.; Dudhia, J. Evaluation of the WRF Double-Moment 6-Class Microphysics Scheme for Precipitating Convection. Adv. Meteorol. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Montero, G.; Montenegro, R.; Escobar, J.; Rodríguez, E.; González, J. Modeling and Numerical Simulation of Wind Fields Oriented to Air Pollution Processes; University of Las Palmas: Las Palmas, Spain, 2006. [Google Scholar]
- Iribarne, J.V.; Godson, W.L. Atmospheric Thermodynamics. In Geophysics and Astrophysics Monographs, 2nd ed.; McCormac, B.M., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 1981; p. 259. [Google Scholar]
- Reisner, J.; Rasmussen, R.M.; Bruintjes, R.T. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. R. Meteorol. Soc. 1998, 124, 1071–1107. [Google Scholar] [CrossRef]
- Liu, C.; Moncrieff, M.W. Sensitivity of Cloud-Resolving Simulations of Warm-Season Convection to Cloud Microphysics Parameterizations. Mon. Weather. Rev. 2007, 135, 2854–2868. [Google Scholar] [CrossRef]
- Otkin, J.A.; Greenwald, T.J. Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data. Mon. Weather. Rev. 2008, 136, 1957–1970. [Google Scholar] [CrossRef]
- Liu, C.; Ikeda, K.; Thompson, G.; Rasmussen, R.; Dudhia, J. High-Resolution Simulations of Wintertime Precipitation in the Colorado Headwaters Region: Sensitivity to Physics Parameterizations. Mon. Weather. Rev. 2011, 139, 3533–3553. [Google Scholar] [CrossRef]
Date | Time (UTC) | Synoptic Patterns |
---|---|---|
2012-06-29 | 19:01 | 1 |
2013-05-18 | 21:03 | 3 |
2016-07-03 | 20:58 | 4 |
2018-12-21 | 01:00 | 5 |
2019-01-27 | 21:58 | 5 |
Microphysics Schemes | Number of Moisture Variables | Ice-Phase Processes | Mixed-Phase Processes |
---|---|---|---|
Lin | 6 | Y | Y |
Morrison 2-moment | 10 | Y | Y |
WSM5 | 5 | Y | N |
WSM6 | 6 | Y | Y |
Rainy Season BIAS | |||||||||
---|---|---|---|---|---|---|---|---|---|
Wind Speed | Wind Direction | ||||||||
Lin | M.2m | WSM5 | WSM6 | Lin | M.2m | WSM5 | WSM6 | ||
Region | Pre- | 1.96 | 2.04 | 1.89 | 1.78 | −27.20 | −28.33 | −27.46 | −24.79 |
In- | 1.04 | 1.24 | 1.07 | 0.99 | −20.64 | −29.18 | −31.83 | −28.64 | |
After- | 1.26 | 1.25 | 1.40 | 1.64 | 21.54 | 8.40 | 15.91 | 26.36 | |
Airport | Pre- | 2.04 | 1.46 | 2.36 | 1.37 | −26.91 | −42.09 | −54.86 | −50.33 |
In- | 0.78 | 1.27 | 1.52 | 0.83 | −50.51 | −171.21 | −157.91 | −86.43 | |
After- | 3.03 | 3.85 | 3.29 | 2.72 | −59.90 | 49.82 | −37.05 | 44.85 |
Dry Season BIAS | |||||||||
---|---|---|---|---|---|---|---|---|---|
Wind Speed | Wind Direction | ||||||||
Lin | M.2m | WSM5 | WSM6 | Lin | M.2m | WSM5 | WSM6 | ||
Region | Pre- | 2.30 | 2.32 | 2.31 | 2.21 | 5.71 | 5.44 | 5.66 | 5.53 |
In- | 1.81 | 1.86 | 2.13 | 1.51 | 47.50 | 48.47 | 47.47 | 48.79 | |
After- | 2.39 | 2.38 | 2.59 | 2.39 | 43.58 | 41.79 | 40.65 | 43.58 | |
Airport | Pre- | 2.94 | 3.31 | 3.77 | 2.62 | 24.24 | 24.24 | 22.45 | 22.17 |
In- | 2.70 | 2.85 | 3.33 | 3.25 | 12.93 | 11.76 | 6.93 | 6.42 | |
After- | 3.23 | 3.28 | 3.70 | 3.45 | 37.82 | 30.76 | 33.83 | 39.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coll-Hidalgo, P.; Pérez-Alarcón, A.; González-Jardines, P.M. Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport. Environ. Sci. Proc. 2021, 4, 31. https://doi.org/10.3390/ecas2020-08121
Coll-Hidalgo P, Pérez-Alarcón A, González-Jardines PM. Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport. Environmental Sciences Proceedings. 2021; 4(1):31. https://doi.org/10.3390/ecas2020-08121
Chicago/Turabian StyleColl-Hidalgo, Patricia, Albenis Pérez-Alarcón, and Pedro Manuel González-Jardines. 2021. "Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport" Environmental Sciences Proceedings 4, no. 1: 31. https://doi.org/10.3390/ecas2020-08121
APA StyleColl-Hidalgo, P., Pérez-Alarcón, A., & González-Jardines, P. M. (2021). Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport. Environmental Sciences Proceedings, 4(1), 31. https://doi.org/10.3390/ecas2020-08121