Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Equipment
2.2. Datasets
2.3. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballesteros, R.; Intrigliolo, D.S.; Ortega, J.F.; Ramírez-Cuesta, J.M.; Buesa, I.; Moreno, M.A. Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precis. Agric. 2020, 21, 1242–1262. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Chancia, R.; Bates, T.; Vanden Heuvel, J.; van Aardt, J. Assessing grapevine nutrient status from unmanned aerial system (UAS) hyperspectral imagery. Remote Sens. 2021, 13, 4489. [Google Scholar] [CrossRef]
- Anastasiou, E.; Castrignanò, A.; Arvanitis, K.; Fountas, S. A multi-source data fusion approach to assess spatial-temporal variability and delineate homogeneous zones: A use case in a table grape vineyard in Greece. Sci. Total Environ. 2019, 684, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V. Sustainable vineyard developments worldwide. J. Enol. Vitic. 2012, 85, 973. [Google Scholar]
- Kasimati Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 636–666. [Google Scholar]
- Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; Pazzona, A.L. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors 2021, 21, 956. [Google Scholar] [CrossRef] [PubMed]
- Akkara Silva, D.M.; Bernardin, T.; Fanton, K.; Nepaul, R.; Pádua, L.; Sousa, J.J.; Cunha, A. Automatic detection of Flavescense Dorée grapevine disease in hyperspectral images using machine learning. Procedia Comput. Sci. 2021, 196, 125–132. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/#map=7/37.280/23.570 (accessed on 1 October 2023).
- MicaSense. Available online: https://support.micasense.com/hc/en-us/article_attachments/204648307 (accessed on 1 October 2023).
- Agisoft Metashape Professional; Version 1.7.1; Agisoft LLC: St. Petersburg, Russia, 2021.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourounioti, O.; Oikonomou, E. Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis. Environ. Sci. Proc. 2024, 29, 36. https://doi.org/10.3390/ECRS2023-16705
Kourounioti O, Oikonomou E. Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis. Environmental Sciences Proceedings. 2024; 29(1):36. https://doi.org/10.3390/ECRS2023-16705
Chicago/Turabian StyleKourounioti, Olympia, and Emmanouil Oikonomou. 2024. "Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis" Environmental Sciences Proceedings 29, no. 1: 36. https://doi.org/10.3390/ECRS2023-16705
APA StyleKourounioti, O., & Oikonomou, E. (2024). Detection and Clustering of Grapevine Varieties via Multispectral Aerial Imagery and Vegetation Indices Analysis. Environmental Sciences Proceedings, 29(1), 36. https://doi.org/10.3390/ECRS2023-16705