Assessment of Outdoor Thermal Comfort during the Last Decade Using Landsat 8 Imagery with Machine Learning Tools over the Three Metropolitan Cities of India †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data
2.2. Data
2.3. Satellite Data
2.4. Methodology
- We acquired the real-time data of meteorological variables over different locations within a city, estimating the thermal comfort index using the below THI formula at those locations.
- We estimated the environmental parameters at those locations that influence thermal comfort. The environmental parameters include NDVI, NDWI, LST, etc. These can be estimated from satellite imagery data such as Landsat, MODIS, etc.
- We conducted a principal component analysis.
- Using machine learning techniques, we created thermal comfort maps with a fine resolution.
3. Results
3.1. Hyderabad
3.2. Bangalore
3.3. Jaipur
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buchin, O.; Hoelscher, M.T.; Meier, F.; Nehls, T.; Ziegler, F. Evaluation of the Health-Risk Reduction Potential of Countermeasures to Urban Heat Islands. Energy Build 2016, 114, 27–37. [Google Scholar] [CrossRef]
- Xiong, J.; Lian, Z.; Zhou, X.; You, J.; Lin, Y. Effects of Temperature Steps on Human Health and Thermal Comfort. Build Environ. 2015, 94, 144–154. [Google Scholar] [CrossRef]
- Ali, S.B.; Patnaik, S. Thermal Comfort in Urban Open Spaces: Objective Assessment and Subjective Perception Study in Tropical City of Bhopal, India. Urban Clim. 2018, 24, 954–967. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Assessing the Outdoor Thermal Comfort Conditions of Exercising People in the Semi-Arid Region of India. Sustain. Cities Soc. 2022, 76, 103366. [Google Scholar] [CrossRef]
- Ziaul, S.; Pal, S. Assessing Outdoor Thermal Comfort of English Bazar Municipality and Its Surrounding, West Bengal, India. AdSpR 2019, 64, 567–580. [Google Scholar] [CrossRef]
- Deevi, B.; Chundeli, F.A. Quantitative Outdoor Thermal Comfort Assessment of Street: A Case in a Warm and Humid Climate of India. Urban Clim. 2020, 34, 100718. [Google Scholar] [CrossRef]
- Rawal, R.; Shukla, Y.; Vardhan, V.; Asrani, S.; Schweiker, M.; de Dear, R.; Garg, V.; Mathur, J.; Prakash, S.; Diddi, S.; et al. Adaptive Thermal Comfort Model Based on Field Studies in Five Climate Zones across India. Build. Environ. 2022, 219, 109187. [Google Scholar] [CrossRef]
- Xu, H.; Hu, X.; Guan, H.; He, G. Development of a Fine-Scale Discomfort Index Map and Its Application in Measuring Living Environments Using Remotely-Sensed Thermal Infrared Imagery. Energy Build. 2017, 150, 598–607. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Towfiqul Islam, A.R.M.; Mallick, J.; Rahman, A. Land Use/Land Cover Change and Its Impact on Surface Urban Heat Island and Urban Thermal Comfort in a Metropolitan City. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Swain, D.; Roberts, G.J.; Dash, J.; Lekshmi, K.; Vinoj, V.; Tripathy, S. Impact of Rapid Urbanization on the City of Bhubaneswar, India. Proc. Natl. Acad. Sci. India Sect. A-Phys. Sci. 2017, 87, 845–853. [Google Scholar] [CrossRef]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of Urban Heat Islands (UHI) of Noida City, India Using Multi-Temporal Satellite Data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- Sharma, R.; Pradhan, L.; Kumari, M.; Bhattacharya, P. Assessing Urban Heat Islands and Thermal Comfort in Noida City Using Geospatial Technology. Urban Clim. 2021, 35, 100751. [Google Scholar] [CrossRef]
- Mijani, N.; Alavipanah, S.K.; Firozjaei, M.K.; Arsanjani, J.J.; Hamzeh, S.; Weng, Q. Modeling Outdoor Thermal Comfort Using Satellite Imagery: A Principle Component Analysis-Based Approach. Ecol. Indic. 2020, 117, 106555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, P.S.H.; Satyanarayana, A.N.V. Assessment of Outdoor Thermal Comfort during the Last Decade Using Landsat 8 Imagery with Machine Learning Tools over the Three Metropolitan Cities of India. Environ. Sci. Proc. 2024, 29, 37. https://doi.org/10.3390/ECRS2023-15838
Prasad PSH, Satyanarayana ANV. Assessment of Outdoor Thermal Comfort during the Last Decade Using Landsat 8 Imagery with Machine Learning Tools over the Three Metropolitan Cities of India. Environmental Sciences Proceedings. 2024; 29(1):37. https://doi.org/10.3390/ECRS2023-15838
Chicago/Turabian StylePrasad, Peri Subrahmanya Hari, and A. N. V. Satyanarayana. 2024. "Assessment of Outdoor Thermal Comfort during the Last Decade Using Landsat 8 Imagery with Machine Learning Tools over the Three Metropolitan Cities of India" Environmental Sciences Proceedings 29, no. 1: 37. https://doi.org/10.3390/ECRS2023-15838
APA StylePrasad, P. S. H., & Satyanarayana, A. N. V. (2024). Assessment of Outdoor Thermal Comfort during the Last Decade Using Landsat 8 Imagery with Machine Learning Tools over the Three Metropolitan Cities of India. Environmental Sciences Proceedings, 29(1), 37. https://doi.org/10.3390/ECRS2023-15838