Statistical Analysis for Long-Term Weather Forecast †
Abstract
:1. Introduction
2. Method
- Calculation of average temperatures in periods of 35, 22, 9, and 7 years (A35, A22, A9, and A7 values) (Figure 1);
- 2.
- Comparison of last period temperatures with A35 values—0 for lower values and 1 for higher values (B values) (Figure 2);
- 3.
- Calculation of average B values in periods of 22, 9, and 7 years (C22, C9, and C7 values—grey) and calculation of corresponding D values (statistical weights) (D22, D9, and D7 values—red) (Figure 3);
- 4.
- Calculation of prediction values based on the formula:
3. Results
- Winter: 72.2%;
- Spring: 72.2%;
- Summer: 38.9%;
- Autumn: 61.1%.
- December: 66.7%;
- January: 66.7%;
- February: 83.3%;
- March: 83.3%;
- April: 66.7%;
- May: 66.7%;
- June: 16.7%;
- July: 50%;
- August: 50%;
- September: 66.7%;
- October: 100%;
- November: 16.7%.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Numerical Weather Prediction (Weather Models). Available online: https://www.weather.gov/media/ajk/brochures/NumericalWeatherPrediction.pdf (accessed on 12 April 2023).
- Mailier, P. Can We Trust Long-Range Weather Forecasts? In Management of Weather and Climate Risk in the Energy Industry; Springer: Berlin/Heidelberg, Germany, 2010; pp. 227–239. [Google Scholar]
- Ali, Z.; Bhaskar, S.B. Basic statistical tools in research and data analysis. Indian J. Anaesth. 2016, 60, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Data classification analysis. Available online: https://www.ibm.com/docs/en/iis/11.7?topic=dcao-data-classification-analysis (accessed on 13 April 2023).
- Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Foehn Effect. Available online: https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/wind/foehn-effect (accessed on 22 April 2023).
- What Is a Temperature Inversion? Available online: https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/temperature/temperature-inversion (accessed on 22 April 2023).
- Urban Climate Impacts. Available online: https://www.metoffice.gov.uk/research/climate/climate-impacts/urban (accessed on 22 April 2023).
- Physical Science Laboratory. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 28 May 2023).
- YouWeather Statistical Model (YSM)—Άνοιξη 2022 (Ελλάδα). Available online: https://www.youweather.com/el-gr/article/o-kairos-tin-anoixi-2022-stin-ellada.html (accessed on 5 May 2023).
- YouWeather. Available online: https://www.youweather.com/el-gr/article/ysm-o-kairos-to-kalokairi-2023-stin-ellada.html (accessed on 5 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampolis, D. Statistical Analysis for Long-Term Weather Forecast. Environ. Sci. Proc. 2023, 26, 30. https://doi.org/10.3390/environsciproc2023026030
Kampolis D. Statistical Analysis for Long-Term Weather Forecast. Environmental Sciences Proceedings. 2023; 26(1):30. https://doi.org/10.3390/environsciproc2023026030
Chicago/Turabian StyleKampolis, Dimitrios. 2023. "Statistical Analysis for Long-Term Weather Forecast" Environmental Sciences Proceedings 26, no. 1: 30. https://doi.org/10.3390/environsciproc2023026030
APA StyleKampolis, D. (2023). Statistical Analysis for Long-Term Weather Forecast. Environmental Sciences Proceedings, 26(1), 30. https://doi.org/10.3390/environsciproc2023026030