Sewage Sludge-Derived Biochar for Micropollutant Removal: A Brief Overview with Emphasis on European Water Policy †
Abstract
:1. Introduction
2. An Overview about the Removal of PSs by SSBC
- Cadmium;
- Lead;
- Mercury;
- Nickel and its compounds.
- Anthracene;
- Atrazine;
- Benzene;
- Nonylphenols;
- Octylphenols;
- Trifluralin;
- Perfluorooctane sulfonic acid and its derivates (PFOS).
- Alachlor;
- Atrazine;
- Brominated diphenylethers (PBDE);
- Chloroalkanes (C10–13);
- Chlorfenvinphos;
- Chlorpyrifos;
- 1,2-dichloroethane;
- Dichloromethane;
- Di(2-ethylhexyl)phthalate (DEHP);
- Diuron;
- Endosulfan;
- Fluoranthene;
- Hexachlorobenzene;
- Hexachlorobutadiene;
- Hexachlorocyclohexane;
- Isoproturon;
- Pentachlorobenzene;
- Pentachlorophenol;
- Polyaromatic hydrocarbons (PAH);
- Simazine;
- Tributyltin compounds;
- Trichlorobenzenes;
- Trichloromethane (chloroform);
- Trifluralin;
- Dicofol;
- Quinoxyfen;
- Dioxins and dioxin-like compounds;
- Aclonifen;
- Bifenox;
- Cybutryne;
- Cypermethrin;
- Dichlorvos;
- Hexabromocyclododecanes (HBCDD);
- Heptachlor and heptachlor epoxide;
- Terbutryn.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorito, A.M.; Lado Ribeiro, A.R.; Pereira, M.F.R.; Almeida, C.M.R.; Silva, A.M.T. Advanced Oxidation Technologies and Constructed Wetlands in Aquaculture Farms: What Do We Know so Far about Micropollutant Removal? Environ. Res. 2022, 204, 111955. [Google Scholar] [CrossRef]
- Völker, J.; Castronovo, S.; Wick, A.; Ternes, T.A.; Joss, A.; Oehlmann, J.; Wagner, M. Advancing Biological Wastewater Treatment: Extended Anaerobic Conditions Enhance the Removal of Endocrine and Dioxin-like Activities. Environ. Sci. Technol. 2016, 50, 10606–10615. [Google Scholar] [CrossRef] [PubMed]
- da Silveira Barcellos, D.; Procopiuck, M.; Bollmann, H.A. Management of Pharmaceutical Micropollutants Discharged in Urban Waters: 30 years of Systematic Review Looking at Opportunities for Developing Countries. Sci. Total Environ. 2022, 809, 151128. [Google Scholar] [CrossRef] [PubMed]
- F&E-Projekte zur Abwasserbeseitigung. Available online: https://www.lanuv.nrw.de/umwelt/wasser/abwasser/foerderung-von-fe-projekten-zur-abwasserbeseitigung/gefoerderte-projekte?tx_cartproducts_products%5Bproduct%5D=1017&cHash=2bbc2e64a36207438a4fd1de236dd850 (accessed on 14 February 2022).
- Kompetenzzentrum Spurenstoffe (KomS) Baden-Württemberg. Micropollutants in Wastewater—Action Recommendation for Municipalities, 1st ed.; Kompetenzzentrum Spurenstoffe (KomS) Baden-Württemberg: Stuttgart, Germany, 2021; p. 10. [Google Scholar]
- Upgrading of Swiss Wastewater Treatment Plants (WWTP). Available online: https://micropoll.ch/en/home/ (accessed on 14 February 2022).
- Xiao, Y.; Raheem, A.; Ding, L.; Chen, W.H.; Chen, X.; Wang, F.; Lin, S.L. Pretreatment, Modification and Applications of Sewage Sludge-Derived Biochar for Resource Recovery- A Review. Chemosphere 2022, 287, 131969. [Google Scholar] [CrossRef] [PubMed]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of Selected Organic Micro-Pollutants on Sewage Sludge Biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Z.; Han, R.; Meng, R.; Wang, H.; Lu, W. Adsorption of Cadmium by Biochar Derived from Municipal Sewage Sludge: Impact Factors and Adsorption Mechanism. Chemosphere 2015, 134, 286–293. [Google Scholar] [CrossRef]
- Zhai, Y.B.; Zeng, G.M.; Wang, L.F.; Wei, X.X.; Li, C.T.; Li, S.H. Removal of Copper and Lead Ions from Aqueous Solutions by Adsorbent Derived from Sewage Sludge. Int. J. Environ. Waste Manag. 2011, 8, 229–240. [Google Scholar] [CrossRef]
- Zhang, F.S.; Nriagu, J.O.; Itoh, H. Mercury Removal from Water Using Activated Carbons Derived from Organic Sewage Sludge. Water Res. 2005, 39, 389–395. [Google Scholar] [CrossRef]
- Mourgela, R.N.; Regkouzas, P.; Pellera, F.M.; Diamadopoulos, E. Ni(II) Adsorption on Biochars Produced from Different Types of Biomass. Water Air Soil Pollut. 2020, 231, 1–16. [Google Scholar] [CrossRef]
- de Filippis, P.; di Palma, L.; Petrucci, E.; Scarsella, M.; Verdone, N. Production and Characterization of Adsorbent Materials from Sewage Sludge by Pyrolysis. Chem. Eng. Trans. 2013, 32, 205–210. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived from Municipal Sewage Sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Gong, X.D.; Abida, O. Waste-to-Resources: Exploratory Surface Modification of Sludge-Based Activated Carbon by Nitric Acid for Heavy Metal Adsorption. Waste Manag. 2019, 87, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Segura, E.; Colin-Cruz, A.; Fall, C.; Solache-Rios, M.; Balderas-Hernández, P. Comparison of Cd-Pb Adsorption on Commercial Activated Carbon and Carbonaceous Material from Pyrolysed Sewage Sludge in Column System. Environ. Technol. 2009, 30, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Jiang, W.; Wang, L.; Peng, J.; Chen, Y. Effect of Pyrolusite Loading on Sewage Sludge-Based Activated Carbon in Cu(II), Pb(II), and Cd(II) Adsorption. Environ. Prog. Sustain. Energy 2013, 32, 1066–1073. [Google Scholar] [CrossRef]
- Fritzmorris, K.B.; Lima, I.M.; Marshall, W.E.; Reimers, R.S. Anion and Cation Removal from Solution Using Activated Carbons from Municipal Sludge and Poultry Manure. J. Residuals Sci. Technol. 2006, 3, 161–167. [Google Scholar]
- Otero, M.; Rozada, F.; Morán, A.; Calvo, L.F.; García, A.I. Removal of Heavy Metals from Aqueous Solution by Sewage Sludge Based Sorbents: Competitive Effects. Desalination 2009, 239, 46–57. [Google Scholar] [CrossRef]
- Björklund, K.; Li, L.Y. Adsorption of Organic Stormwater Pollutants onto Activated Carbon from Sewage Sludge. J. Environ. Manag. 2017, 197, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Kirschhöfer, F.; Sahin, O.; Becker, G.C.; Meffert, F.; Nusser, M.; Anderer, G.; Kusche, S.; Klaeusli, T.; Kruse, A.; Brenner-Weiss, G. Wastewater Treatment—Adsorption of Organic Micropollutants on Activated HTC-Carbon Derived from Sewage Sludge. Water Sci. Technol. 2016, 73, 607–616. [Google Scholar] [CrossRef]
- Kah, M.; Sun, H.; Sigmund, G.; Hüffer, T.; Hofmann, T. Pyrolysis of Waste Materials: Characterization and Prediction of Sorption Potential across a Wide Range of Mineral Contents and Pyrolysis Temperatures. Bioresour. Technol. 2016, 214, 225–233. [Google Scholar] [CrossRef]
- Oh, S.Y.; Son, J.G.; Chiu, P.C. Biochar-Mediated Reductive Transformation of Nitro Herbicides and Explosives. Environ. Toxicol. Chem. 2013, 32, 501–508. [Google Scholar] [CrossRef]
- Kundu, S.; Patel, S.; Halder, P.; Patel, T.; Hedayati Marzbali, M.; Pramanik, B.K.; Paz-Ferreiro, J.; de Figueiredo, C.C.; Bergmann, D.; Surapaneni, A.; et al. Removal of PFASs from Biosolids Using a Semi-Pilot Scale Pyrolysis Reactor and the Application of Biosolids Derived Biochar for the Removal of PFASs from Contaminated Water. Environ. Sci. Water Res. Technol. 2021, 7, 638–649. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Li, L.Y.; Hamid, H.; Jeronimo, M. Sludge-Based Activated Carbon and Its Application in the Removal of Perfluoroalkyl Substances: A Feasible Approach towards a Circular Economy. Chemosphere 2022, 294, 133707. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatz, C.; Belgiorno, V.; Zarra, T.; Korshin, G.V.; Naddeo, V. Sewage Sludge-Derived Biochar for Micropollutant Removal: A Brief Overview with Emphasis on European Water Policy. Environ. Sci. Proc. 2022, 21, 77. https://doi.org/10.3390/environsciproc2022021077
Gatz C, Belgiorno V, Zarra T, Korshin GV, Naddeo V. Sewage Sludge-Derived Biochar for Micropollutant Removal: A Brief Overview with Emphasis on European Water Policy. Environmental Sciences Proceedings. 2022; 21(1):77. https://doi.org/10.3390/environsciproc2022021077
Chicago/Turabian StyleGatz, Christoph, Vincenzo Belgiorno, Tiziano Zarra, Gregory V. Korshin, and Vincenzo Naddeo. 2022. "Sewage Sludge-Derived Biochar for Micropollutant Removal: A Brief Overview with Emphasis on European Water Policy" Environmental Sciences Proceedings 21, no. 1: 77. https://doi.org/10.3390/environsciproc2022021077
APA StyleGatz, C., Belgiorno, V., Zarra, T., Korshin, G. V., & Naddeo, V. (2022). Sewage Sludge-Derived Biochar for Micropollutant Removal: A Brief Overview with Emphasis on European Water Policy. Environmental Sciences Proceedings, 21(1), 77. https://doi.org/10.3390/environsciproc2022021077