Hydrodynamics of a Bordered Collar as a Countermeasure against Pier Scouring †
Abstract
:1. State of the Art
2. Laboratory Tests
2.1. Test Conditions
2.2. Test Setup and Procedure
2.3. Scoured Bathymetry Survey
3. Numerical Simulations
Numerical Model
4. Results and Discussion
4.1. Results of the Laboratory Tests
4.2. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tafarojnoruz, A.; Gaudio, R.; Dey, S. Flow-altering countermeasures against scour at bridge piers: A review. J. Hydraul. Res. 2010, 48, 441–452. [Google Scholar] [CrossRef]
- Tafarojnoruz, A.; Gaudio, R.; Calomino, F. Evaluation of flow-altering countermeasures against bridge pier scour. J. Hydraul. Eng. 2012, 138, 297–305. [Google Scholar] [CrossRef]
- Froehlich, D.C. Protecting bridge piers with loose rock riprap. J. Appl. Water Eng. Res. 2013, 1, 39–57. [Google Scholar] [CrossRef]
- Lauchlan, C.S.; Melville, B.W. Riprap protection at bridge piers. J. Hydraulic Eng. 2001, 127, 412–418. [Google Scholar] [CrossRef]
- Mashahir, M.B.; Zarrati, A.R.; Mokallaf, E. Application of riprap and collar to prevent scouring around rectangular bridge piers. J. Hydraul. Eng. 2010, 136, 183–187. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.H.; Nasrabadi, M. Reduction of scour using a combination of riprap and bed sill. Proc. Inst. Civ. Eng.-Water Manag. 2018, 171, 264–270. [Google Scholar] [CrossRef]
- Zarrati, A.R.; Chamani, M.R.; Shafaie, A.; Latifi, M. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. Int. J. Sediment Res. 2010, 25, 313–322. [Google Scholar] [CrossRef]
- Richardson, J.; Richardson, E. Discussion of ‘Local Scour at Bridge Abutments’ by BW Melville (April, 1992, Vol. 118, No. 4). J. Hydraulic Eng. 1993, 119, 1069–1071. [Google Scholar] [CrossRef]
- Wang, S.; Wei, K.; Shen, Z.; Xiang, Q. Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars. Water 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Alabi, P.D. Time Development of Local Scour at a Bridge Pier Fitted with a Collar. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2006. [Google Scholar]
- Bestawy, A.; Eltahawy, T.; Alsaluli, A.; Almaliki, A.; Alqurashi, M. Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Supply 2020, 20, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Tfwala, S.; Wu, T.Y.; Chan, H.C.; Chou, H.T. A hooked-collar for bridge piers protection: Flow fields and scour. Water 2018, 10, 1251. [Google Scholar] [CrossRef] [Green Version]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Unger, J.; Hager, W.H. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids 2007, 42, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Raikar, R.V. Characteristics of horseshoe vortex in developing scour holes at piers. J. Hydraul. Eng. 2007, 133, 399–413. [Google Scholar] [CrossRef]
- Kirkil, G.; Constantinescu, G.; Ettema, R. Detached eddy simulation investigation of turbulence at a circular pier with scour hole. J. Hydraul. Eng. 2009, 135, 888–901. [Google Scholar] [CrossRef]
- Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J. Numerical investigation of flow and scour around a vertical circular cylinder. Phil. Trans. R. Soc. A 2015, 373, 20140104. [Google Scholar] [CrossRef] [Green Version]
- Neill, C. Mean-velocity criterion for scour of coarse uniform bed-material. In Proceedings of the International Association of Hydraulic Research 12th Congress, Fort Collins, CO, USA, 11–14 September 1967. [Google Scholar]
- Zarrati, A.; Nazariha, M.; Mashahir, M. Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. J. Hydraul. Eng. 2006, 132, 154–162. [Google Scholar] [CrossRef]
- Ferraro, D.; Fenocchi, A.; Gaudio, R. Hydrodynamics of a bordered collar as a countermeasure against pier scouring. Proc. R. Soc. A 2020, 476, 20200393. [Google Scholar] [CrossRef]
- Chiew, Y.M.; Melville, B.W. Local scour around bridge piers. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Ettema, R. Scour at Bridge Piers; Technical Report no. 216; University of Auckland: Auckland, New Zealand, 1980. [Google Scholar]
- Jiménez, J. Computing turbulent channels at experimental Reynolds numbers. In Proceedings of the 15th Australasian Fluid Mechanics Conference the University of Sydney, Sydney, Australia, 13–17 December 2004. [Google Scholar]
- Ferraro, D.; Servidio, S.; Gaudio, R. Velocity scales in steady-nonuniform turbulent flows with low relative submergence. Environ. Fluid Mech. 2019, 19, 1025–1041. [Google Scholar] [CrossRef]
- Coleman, S.E. Clearwater local scour at complex piers. J. Hydraul. Eng. 2005, 131, 330–334. [Google Scholar] [CrossRef]
- Siemens. Simcenter STAR-CCM+ v2019.1; Siemens: Melville, NY, USA, 2019. [Google Scholar]
- Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. Comput. Fluids 1994, 24, 227–238. [Google Scholar] [CrossRef]
- Ballio, F.; Orsi, E. Time evolution of scour around bridge abutments. Water Eng. Res. 2001, 2, 243–259. [Google Scholar]
- Oliveto, G.; Hager, W.H. Temporal evolution of clear-water pier and abutment scour. J. Hydraul. Eng. 2002, 128, 811–820. [Google Scholar] [CrossRef]
- Chang, W.Y.; Lai, J.S.; Yen, C.L. Evolution of scour depth at circular bridge piers. J. Hydraul. Eng. 2004, 130, 905–913. [Google Scholar] [CrossRef]
- Ferraro, D.; Tafarojnoruz, A.; Gaudio, R.; Cardoso, A.H. Effects of pile cap thickness on the maximum scour depth at a complex pier. J. Hydraul. Eng. 2013, 139, 482–491. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Baratian-Ghorghi, Z.; Beheshti, A. Experimental investigation of clearwater local scour of compound piers. J. Hydraul. Eng. 2010, 136, 343–351. [Google Scholar] [CrossRef]
- Moreno, M.; Maia, R.; Couto, L.; Cardoso, A. Evaluation of local scour depth around complex bridge piers. Proc. River Flow 2012, 2, 935–942. [Google Scholar]
- Ramos, P.X.; Bento, A.M.; Maia, R.; Pêgo, J.P. Characterization of the scour cavity evolution around a complex bridge pier. J. Appl. Water Eng. Res. 2016, 4, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Salaheldin, T.M.; Imran, J.; Chaudhry, M.H. Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 2004, 130, 91–100. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Aslani-Kordkandi, A. Flow field around side-by-side piers with and without a scour hole. Eur. J. Mech.-B/Fluids 2012, 36, 152–166. [Google Scholar] [CrossRef]
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Gioia, G.; Chakraborty, P. Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 2006, 96, 044502. [Google Scholar] [CrossRef] [PubMed]
Dimensionless Parameter | U/Uc | b/d50 | σg | B/b | h/b | h/d50 | Rep |
---|---|---|---|---|---|---|---|
Value | 0.96 | 26.14 | 1.24 | 12.1 | 3.22 | 84.31 | 1.5 × 104 |
Test | Δyse (mm) | vse (dm3) | ||
---|---|---|---|---|
0 | 92.9 | 10.5 | - | - |
1 | 37.5 | 5.90 | 59.63% | 43.80% |
2 | 33.9 | 4.20 | 63.51% | 60.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, D.; Fenocchi, A.; Gaudio, R. Hydrodynamics of a Bordered Collar as a Countermeasure against Pier Scouring. Environ. Sci. Proc. 2022, 21, 6. https://doi.org/10.3390/environsciproc2022021006
Ferraro D, Fenocchi A, Gaudio R. Hydrodynamics of a Bordered Collar as a Countermeasure against Pier Scouring. Environmental Sciences Proceedings. 2022; 21(1):6. https://doi.org/10.3390/environsciproc2022021006
Chicago/Turabian StyleFerraro, Domenico, Andrea Fenocchi, and Roberto Gaudio. 2022. "Hydrodynamics of a Bordered Collar as a Countermeasure against Pier Scouring" Environmental Sciences Proceedings 21, no. 1: 6. https://doi.org/10.3390/environsciproc2022021006
APA StyleFerraro, D., Fenocchi, A., & Gaudio, R. (2022). Hydrodynamics of a Bordered Collar as a Countermeasure against Pier Scouring. Environmental Sciences Proceedings, 21(1), 6. https://doi.org/10.3390/environsciproc2022021006