Direct Simulation of Micro-Component Water Consumption for the Evaluation of Potential Water Reuse in Households †
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Green-Smart Technology Metabolic Model (GSTMM)
2.2. Life Cycle Analysis (LCA) within GSTMM
2.3. Generation of Time Series of End-Use Water Demand
3. Selected Indicators for the Water System Performance
4. Case Study
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 18 October 2022).
- UN General Assembly. Observance of World Day for Water : Resolution/Adopted by the General Assembly, 22 December 1992, A/RES/47/193. Available online: https://www.refworld.org/docid/3b00f0f224.html (accessed on 18 October 2022).
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A Review of the Water-energy Nexus. Renew. Sust. Energ. Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal COM/2019/640 Final; EU Publications: Brussels, Belgium, 2019. [Google Scholar]
- European Environment Agency. The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Venkatesh, G.; Brattebø, H.; Sægrov, S.; Behzadian, K.; Kapelan, Z. Metabolism-modelling Approaches to Long-term Sustainability Assessment of Urban Water Services. Urban Water J. 2015, 14, 11–22. [Google Scholar] [CrossRef]
- Knutsson, J.; Knutsson, P. Water and Energy Savings from Greywater Reuse: A Modelling Scheme Using Disaggregated Consumption Data. Int. J. Energ. Water Res. 2021, 5, 13–24. [Google Scholar] [CrossRef]
- Altobelli, M.; Cipolla, S.S.; Maglionico, M. Combined Application of Real-Time Control and Green Technologies to Urban Drainage Systems. Water 2020, 12, 3432. [Google Scholar] [CrossRef]
- Snir, O.; Friedler, E. Dual Benefit of Rainwater Harvesting—High Temporal-Resolution Stochastic Modelling. Water 2021, 13, 2415. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the Urban Water Cycle. Environ. Model. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Natsis, K.; Liu, S.; Mittas, K.; Butler, D. Decision Support for Sustainable Option Selection in Integrated Urban Water Management. Environ. Model. Softw 2008, 23, 1448–1460. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Diaper, C. UVQ: A Tool for Assessing the Water and Contaminant Balance Impacts of Urban Development Scenarios. Water Sci. Technol. 2005, 52, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, G.; Ugarelli, R.; Sægrov, S.; Brattebø, H. Dynamic Metabolism Modeling as A Decision-Support Tool for Urban Water Utilities Applied to the Upstream of the Water System in Oslo, Norway. Procedia Eng. 2014, 89, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Behzadian, K.; Kapelan, Z. Modelling Metabolism-based Performance of An Urban Water System Using WaterMet2. Resour. Conserv. Recycl. 2015, 99, 84–99. [Google Scholar] [CrossRef]
- Sahely, H.R.; Dudding, S.; Kennedy, A.C. Estimating the Urban Metabolism of Canadian Cities: Greater Toronto Area Case Study. Can. J. Civ. Eng. 2003, 30, 468–483. [Google Scholar] [CrossRef]
- Buchberger, S.; Wu, L. Model for Instantaneous Residential Water Demands. J. Hydraul. Eng. 1995, 121, 232–246. [Google Scholar] [CrossRef]
- Blokker, E.; Vreeburg, J.; Van Dijk, J. Simulating Residential Water Demand with A Stochastic End-use Model. J. Water Resour. Plan. Manag. -ASCE 2010, 136, 19–26. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Selecting Time Scale Resolution to Evaluate Water Saving and Retention Potential of Rainwater Harvesting Tanks. Procedia Eng. 2014, 70, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Filion, Y.R.; MacLean, H.L.; Karney, B.W. Life-cycle Energy Analysis of A Water Distribution System. J. Infrastruct. Syst. 2004, 10, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C. Reflecting the Environmental Cost of Greenhouse Gas Emissions from Sn Urban Water System in the Water Price. Water Environ. J. 2019, 34, 207–215. [Google Scholar] [CrossRef]
- Gargiulo, A.; Carvalho, M.L.; Girardi, P. Life Cycle Assessment of Italian Electricity Scenarios to 2030. Energies 2020, 13, 3852. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.; Barbera, P.L. Performance Analysis of Domestic Rainwater Harvesting Systems under Various European Climate Zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
End-Use | El m | PF m | PR | TU °C | HW % | RES % | REC % |
---|---|---|---|---|---|---|---|
WC | 2.00 | 5.0 | GW | 8.0 | 0 | 100 | 0 |
DW | 1.00 | 5.0 | FW | 45.0 | 50 | 100 | 0 |
SW | 2.00 | 5.0 | FW | 45.0 | 70 | 100 | 100 |
BT | 1.25 | 5.0 | FW | 30.0 | 100 | 100 | 100 |
BA | 1.00 | 5.0 | FW | 38.0 | 60 | 100 | 100 |
WM | 1.25 | 5.0 | FW | 40.0 | 50 | 100 | 100 |
KT | 1.25 | 5.0 | FW | 33.0 | 80 | 100 | 0 |
OT | 1.00 | 5.0 | GW | 8.0 | 0 | 0 | 0 |
GR | 1.00 | 5.0 | GW | 8.0 | 0 | 0 | 0 |
End-Use | PDF-I | µ | σ | PDF-D | µ | σ |
---|---|---|---|---|---|---|
WC | DE | 0.042 | - | DE | 144.000 | - |
DW | U | 0.140 | 0.194 | DE | 84.000 | - |
SW | U | 0.120 | 0.164 | LN | 6.234 | 0.031 |
BT | U | 0.020 | 0.064 | LN | 3.673 | 0.179 |
BA | U | 0.080 | 0.320 | DE | 600.000 | - |
WM | U | 0.140 | 0.194 | DE | 300.000 | - |
KT | U | 0.070 | 0.096 | LN | 2.734 | 0.280 |
OT | U | 0.080 | 0.120 | LN | 5.702 | 0.066 |
scn | GW | MW | scn | GW MW | scn | GW MW |
---|---|---|---|---|---|---|
R050-000 | 0.050 | 0.0 | R000-100 | 0.0 0.100 | R050-100 | 0.050 0.100 |
R075-000 | 0.075 | 0.0 | R000-250 | 0.0 0.250 | R075-250 | 0.075 0.250 |
R100-000 | 0.100 | 0.0 | R000-500 | 0.0 0.500 | R100-500 | 0.100 0.500 |
R125-000 | 0.125 | 0.0 | R000-750 | 0.0 0.750 | R125-750 | 0.125 0.750 |
R150-000 | 0.150 | 0.0 | R000-1000 | 0.0 1.000 | R150-1000 | 0.150 1.000 |
Scn | FW2D | GW2D | MW2D | E | Ow | Om | SWR2D | ∆e[%] |
---|---|---|---|---|---|---|---|---|
BAU | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.679 | 0.00 |
R050-000 | 0.828 | 0.172 | 0.000 | 0.364 | 0.554 | 1.000 | 0.505 | −0.71 |
R075-000 | 0.812 | 0.188 | 0.000 | 0.398 | 0.513 | 1.000 | 0.489 | −0.77 |
R100-000 | 0.801 | 0.199 | 0.000 | 0.421 | 0.485 | 1.000 | 0.478 | −0.81 |
R125-000 | 0.792 | 0.208 | 0.000 | 0.442 | 0.460 | 1.000 | 0.469 | −0.85 |
R150-000 | 0.783 | 0.217 | 0.000 | 0.460 | 0.438 | 1.000 | 0.460 | −0.89 |
R000-100 | 0.937 | 0.000 | 0.063 | 0.134 | 0.000 | 0.787 | 0.679 | −0.30 |
R000-250 | 0.901 | 0.000 | 0.099 | 0.210 | 0.000 | 0.667 | 0.679 | −0.47 |
R000-500 | 0.863 | 0.000 | 0.137 | 0.290 | 0.000 | 0.537 | 0.679 | −0.64 |
R000-750 | 0.838 | 0.000 | 0.162 | 0.343 | 0.000 | 0.451 | 0.679 | −0.76 |
R000-1000 | 0.817 | 0.000 | 0.183 | 0.389 | 0.000 | 0.379 | 0.679 | −0.86 |
R050-100 | 0.799 | 0.172 | 0.030 | 0.427 | 0.554 | 0.900 | 0.505 | −0.84 |
R075-250 | 0.766 | 0.188 | 0.046 | 0.496 | 0.513 | 0.840 | 0.489 | −0.97 |
R100-500 | 0.732 | 0.199 | 0.069 | 0.568 | 0.485 | 0.756 | 0.478 | −1.12 |
R125-750 | 0.703 | 0.208 | 0.089 | 0.630 | 0.460 | 0.684 | 0.469 | −1.24 |
R150-1000 | 0.679 | 0.217 | 0.105 | 0.682 | 0.438 | 0.625 | 0.460 | −1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liserra, T.; Bonoli, A.; Di Federico, V. Direct Simulation of Micro-Component Water Consumption for the Evaluation of Potential Water Reuse in Households. Environ. Sci. Proc. 2022, 21, 43. https://doi.org/10.3390/environsciproc2022021043
Liserra T, Bonoli A, Di Federico V. Direct Simulation of Micro-Component Water Consumption for the Evaluation of Potential Water Reuse in Households. Environmental Sciences Proceedings. 2022; 21(1):43. https://doi.org/10.3390/environsciproc2022021043
Chicago/Turabian StyleLiserra, Tonino, Alessandra Bonoli, and Vittorio Di Federico. 2022. "Direct Simulation of Micro-Component Water Consumption for the Evaluation of Potential Water Reuse in Households" Environmental Sciences Proceedings 21, no. 1: 43. https://doi.org/10.3390/environsciproc2022021043
APA StyleLiserra, T., Bonoli, A., & Di Federico, V. (2022). Direct Simulation of Micro-Component Water Consumption for the Evaluation of Potential Water Reuse in Households. Environmental Sciences Proceedings, 21(1), 43. https://doi.org/10.3390/environsciproc2022021043