The Role of Micro-Hydropower Energy Recovery in the Water-Energy-Food Nexus †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hidden Hydropower Review and Opportunities in the Water Industry Related Sectors
2.2. Strengths of Hiden-Hydro in a Climate Change Context
2.3. Potential Impacts on Cost, Food and Energy Production
2.4. Policy and Technological Barriers to Exploitation of Hidden Hydro
3. Results
3.1. Hidden Hydropower Opportunities
3.2. Potential Impacts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- U.S. Department of Energy. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather; DOE/PI-001; U.S. Department of Energy: Washington, DC, USA, 2013.
- Unesco. Implementing the Water-Energy-Food-Ecosystems Nexus and Achieving the Sustainable Development Goals; Unesco: Paris, France, 2021. [Google Scholar]
- Vuta, L.I.; Dumitran, G.E.; Popa, B.; Diminescu, M.A.; Tica, E.I. Hidden Hydro Related with Non-Powered Dams in Romania. In Proceedings of the 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), Timisoara, Romania, 17–18 October 2019; pp. 413–417. [Google Scholar] [CrossRef]
- Corcoran, L.; McNabola, A.; Coughlan, P. Optimization of Water Distribution Networks for Combined Hydropower Energy Recovery and Leakage Reduction. J. Water Resour. Plan. Manag. 2016, 142, 04015045. [Google Scholar] [CrossRef]
- McNabola, A.; Coughlan, P.; Williams, A.P. The technical and economic feasibility of energy recovery in water supply networks. Renew. Energy Power Qual. J. 2011, 1, 1123–1127. [Google Scholar] [CrossRef]
- Morillo, J.G.; McNabola, A.; Camacho, E.; Montesinos, P.; Díaz, J.A.R. Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain. Agric. Water Manag. 2018, 204, 17–27. [Google Scholar] [CrossRef]
- Bousquet, C.; Samora, I.; Manso, P.; Rossi, L.; Heller, P.; Schleiss, A.J. Assessment of hydropower potential in wastewater systems and application to Switzerland. Renew. Energy 2017, 113, 64–73. [Google Scholar] [CrossRef]
- García, A.M.; Díaz, J.R.; Morillo, J.G.; McNabola, A. Energy Recovery Potential in Industrial and Municipal Wastewater Networks Using Micro-Hydropower in Spain. Water 2021, 13, 691. [Google Scholar] [CrossRef]
- Fujii, M.; Tanabe, S.; Yamada, M.; Mishima, T.; Sawadate, T.; Ohsawa, S. Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan. J. Hydrol. Reg. Stud. 2015, 11, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H.M. Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour. Manag. 2012, 26, 3947–3959. [Google Scholar] [CrossRef]
- Chae, K.-J.; Kim, I.-S.; Ren, X.; Cheon, K.-H. Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Convers. Manag. 2015, 101, 681–688. [Google Scholar] [CrossRef]
- Novara, D.; Carravetta, A.; McNabola, A.; Ramos, H.M. Cost Model for Pumps as Turbines in Run-of-River and In-Pipe Microhydropower Applications. J. Water Resour. Plan. Manag. 2019, 145, 04019012. [Google Scholar] [CrossRef]
- Fecarotta, O.; Ramos, H.M.; Derakhshan, S.; Del Giudice, G.; Carravetta, A. Fine Tuning a PAT Hydropower Plant in a Water Supply Network to Improve System Effectiveness. J. Water Resour. Plan. Manag. 2018, 144, 04018038. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 2016, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Mitrovic, D.; Chacón, M.C.; García, A.M.; Morillo, J.G.; Diaz, J.A.R.; Ramos, H.M.; Adeyeye, K.; Carravetta, A.; Mcnabola, A. Multi-Country Scale Assessment of Available Energy Recovery Potential Using Micro-Hydropower in Drink-ing, Pressurised Irrigation and Wastewater Networks, Covering Part of the EU. Water 2021, 13, 899. [Google Scholar] [CrossRef]
- Barbour, E.; Wilson, I.G.; Radcliffe, J.; Ding, Y.; Li, Y. A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 2016, 61, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Chacón, M.C.; Díaz, J.A.R.; Morillo, J.G.; McNabola, A. Evaluation of the design and performance of a micro hydropower plant in a pressurised irrigation network: Real world application at farm-level in Southern Spain. Renew. Energy 2021, 169, 1106–1120. [Google Scholar] [CrossRef]
- García, A.M.; Gallagher, J.; Chacón, M.C.; Mc Nabola, A. The environmental and economic benefits of a hybrid hydropower energy recovery and solar energy system (PAT-PV), under varying energy demands in the agricultural sector. J. Clean. Prod. 2021, 303, 127078. [Google Scholar] [CrossRef]
- Gallagher, J.; Styles, D.; McNabola, A.; Williams, A.P. Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems. Resour. Conserv. Recycl. 2015, 105, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.A.R.; Poyato, E.C.; Pérez, M.B. Evaluation of Water and Energy Use in Pressurized Irrigation Networks in Southern Spain. J. Irrig. Drain. Eng. 2011, 137, 644–650. [Google Scholar] [CrossRef]
- Díaz, J.A.R.; Pérez-Urrestarazu, L.; Camacho-Poyato, E.; Montesinos, P. The paradox of irrigation scheme modernization: More efficient water use linked to higher energy demand. Span. J. Agric. Res. 2011, 9, 1000. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and Food Security: Linkages through Price Volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Darbaz, I. The Causal Linkage between Energy Price and Food Price. Energies 2021, 14, 4182. [Google Scholar] [CrossRef]
- Vourdoubas, J.; Dubois, O. Energy and Agri-Food Systems: Production and Consumption. In Mediterra 2016. Zero Waste in the Mediterranean 2016; Presses de Sciences Po: Paris, France, 2016; p. 155. [Google Scholar]
- MAPA. Cuentas Económicas de la Agricultura. 2021. Available online: https://www.mapa.gob (accessed on 15 January 2022).
- Kougias, I.; Aggidis, G.; Avellan, F.; Deniz, S.; Lundin, U.; Moro, A.; Muntean, S.; Novara, D.; Pérez-Díaz, J.I.; Quaranta, E.; et al. Analysis of emerging technologies in the hydropower sector. Renew. Sustain. Energy Rev. 2019, 113, 109257. [Google Scholar] [CrossRef]
- European Commission. Water-Energy Nexus in Europe. In JRC Science for Policy Report; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Eurostat, Final Energy Consumption by Sector. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/ten00124/default/table?lang= (accessed on 1 February 2022).
- Eurostat, Energy Consumption by Agriculture EU 2009–2019. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_energy_use#Data_sources (accessed on 1 February 2022).
- Eurostat, Electricity Prices for Non-Household Consumers-bi-Annual Data (from 2007 Onwards). 2021. Available online: https://ec.europa.eu/eurostat/databrowser/view/NRG_PC_205/default/table?lang=en&category=nrg.nrg_price.nrg_pc (accessed on 1 February 2022).
- Environmental European Agency. Greenhouse Gas Emission Intensity of Electricity Generation in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-3/assessment (accessed on 1 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNabola, A.; Mérida García, A.; Rodríguez Díaz, J.A. The Role of Micro-Hydropower Energy Recovery in the Water-Energy-Food Nexus. Environ. Sci. Proc. 2022, 21, 27. https://doi.org/10.3390/environsciproc2022021027
McNabola A, Mérida García A, Rodríguez Díaz JA. The Role of Micro-Hydropower Energy Recovery in the Water-Energy-Food Nexus. Environmental Sciences Proceedings. 2022; 21(1):27. https://doi.org/10.3390/environsciproc2022021027
Chicago/Turabian StyleMcNabola, Aonghus, Aida Mérida García, and Juan Antonio Rodríguez Díaz. 2022. "The Role of Micro-Hydropower Energy Recovery in the Water-Energy-Food Nexus" Environmental Sciences Proceedings 21, no. 1: 27. https://doi.org/10.3390/environsciproc2022021027
APA StyleMcNabola, A., Mérida García, A., & Rodríguez Díaz, J. A. (2022). The Role of Micro-Hydropower Energy Recovery in the Water-Energy-Food Nexus. Environmental Sciences Proceedings, 21(1), 27. https://doi.org/10.3390/environsciproc2022021027