Rain- and Seismic-Triggered Mass Movements in Coastal Ecuador—A Case Study of the “El Florón” Landslide in Portoviejo
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets

3. Methods Applied and Field Investigation
3.1. Geological Reconnaissance
3.2. Geophysical Prospection
3.3. Kinematics and Dynamics of Unstable Slopes
4. Results
4.1. Potential Triggers of Landslides by Seismic Activity of Quaternary Upper-Crustal Faults
4.2. Geology and Geomechanical Characteristics
4.3. Geotechnical and Geophysical Characterization of the Subsoil
4.4. Geotechnical Conditions of Shales and Siltstones
5. Discussion
5.1. Data and Numerical Modeling
5.2. Slope Stability Analysis
5.3. Alternatives for Landslide Prevention
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, D. On the causes of landslides: Human activities, perception, and natural processes. Environ. Geol. Water Sci. 1992, 20, 165–179. [Google Scholar] [CrossRef]
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Cavalli, M.; Crema, S.; Meisina, C. The role of human activities on sediment connectivity of shallow landslides. Catena 2018, 160, 261–274. [Google Scholar] [CrossRef]
- Pollock, W.; Wartman, J. Human vulnerability to landslides. GeoHealth 2020, 4, e2020GH000287. [Google Scholar] [CrossRef]
- Velázquez-Bucio, M.M.; Ferrario, M.F.; Muccignato, E.; Porfido, S.; Sridharan, A.; Chunga, K.; Livio, F.; Gopalan, S.; Michetti, A.M. Environmental effects caused by the Mw 8.2, September 8, 2017, and Mw 7.4, June 23, 2020, Chiapas-Oaxaca (Mexico) subduction events: Comparison of large intraslab and interface earthquakes. Quat. Int. 2023, 651, 62–76. [Google Scholar] [CrossRef]
- Bois, T.; Bouissou, S.; Jaboyedoff, M. Influence of structural heterogeneities and of large-scale topography on imbricate gravitational rock slope failures: New insights from 3-D physical modeling and geomorphological analysis. Tectonophysics 2012, 526, 147–156. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Mass-movements and climate change. Treatise Geomorphol. 2022, 5, 546–558. [Google Scholar] [CrossRef]
- Hradecký, J.; Pánek, T. Deep-seated gravitational slope deformations and their influence on consequent mass movements (case studies from the highest part of the Czech Carpathians). Nat. Hazards 2008, 45, 235–253. [Google Scholar] [CrossRef]
- Shroder, J.F.; Owen, L.A.; Seong, Y.B.; Bishop, M.P.; Bush, A.; Caffee, M.W.; Copland, L.; Finkel, R.C.; Kamp, U. The role of mass movements on landscape evolution in the Central Karakoram: Discussion and speculation. Quat. Int. 2011, 236, 34–47. [Google Scholar] [CrossRef]
- Stoffel, M.; Huggel, C. Effects of climate change on mass movements in mountain environments. Prog. Phys. Geogr. 2012, 36, 421–439. [Google Scholar] [CrossRef]
- Stoffel, M.; Tiranti, D.; Huggel, C. Climate change impacts on mass movements—Case studies from the European Alps. Sci. Total Environ. 2014, 493, 1255–1266. [Google Scholar] [CrossRef]
- Trauth, M.H.; Alonso, R.A.; Haselton, K.R.; Hermanns, R.L.; Strecker, M.R. Climate change and mass movements in the NW Argentine Andes. Earth Planet. Sci. Lett. 2000, 179, 243–256. [Google Scholar] [CrossRef]
- Coltorti, M.; Ollier, C.D. Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology 2000, 32, 1–19. [Google Scholar] [CrossRef]
- Harden, C.P. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 2006, 79, 249–263. [Google Scholar] [CrossRef]
- Parsons, J.J. The northern Andean environment. Mt. Res. Dev. 1982, 2, 253–264. [Google Scholar] [CrossRef]
- Soto, J.; Galve, J.P.; Palenzuela, J.A.; Azañón, J.M.; Tamay, J.; Irigaray, C. A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides 2017, 14, 1929–1947. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Torrijo Echarri, F.J.; Garzón-Roca, J. Sustainable management of landslides in Ecuador: Leveraging geophysical surveys for effective risk reduction. Sustainability 2024, 16, 10797. [Google Scholar] [CrossRef]
- Chunga, K.; Livio, F.A.; Martillo, C.; Lara-Saavedra, H.; Ferrario, M.F.; Zevallos, I.; Michetti, A.M. Landslides triggered by the 2016 Mw 7.8 Pedernales, Ecuador earthquake: Correlations with ESI-07 intensity, lithology, slope and PGA-h. Geosciences 2019, 9, 371. [Google Scholar] [CrossRef]
- Palenzuela Baena, J.A.; Soto Luzuriaga, J.; Irigaray Fernández, C. Characteristics of rainfall events triggering landslides in two climatologically different areas: Southern Ecuador and southern Spain. Hydrology 2020, 7, 45. [Google Scholar] [CrossRef]
- Quiñónez-Macías, M.; Chunga, K.; Toulkeridis, T.; Mora-Mendoza, A.; Constantine, A. New Perspectives on the Quaternary Paleogeography of Coastal Ecuador and Its Relationships with Climate Change. Quaternary 2023, 6, 41. [Google Scholar] [CrossRef]
- Tibaldi, A.; Ferrari, L.; Pasquarè, G. Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: An example from Ecuador. Geomorphology 1995, 11, 215–226. [Google Scholar] [CrossRef]
- Chunga, K.; Ochoa-Cornejo, F.; Mulas, M.; Toulkeridis, T.; Menéndez, E. Characterization of seismogenic crustal faults in the Gulf of Guayaquil, Ecuador. Andean Geol. 2019, 46, 66–81. [Google Scholar] [CrossRef]
- Macías, L.; Quiñonez-Macías, M.; Toulkeridis, T.; Pastor, J.L. Characterization and geophysical evaluation of the recent 2023 Alausí landslide in the northern Andes of Ecuador. Landslides 2024, 21, 529–540. [Google Scholar] [CrossRef]
- Salinas, I.; Paucar, A.; Quiñónez-Macías, M.; Grau, F.; Barragán-Taco, M.; Toulkeridis, T.; Chunga, K. Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador. Geosciences 2024, 14, 104. [Google Scholar] [CrossRef]
- Castelo, C.A.J.; Cruz, M.; Almeida, O.P.; Toulkeridis, T. Comparative determination of the probability of landslide occurrences and susceptibility in Central Quito, Ecuador. In Proceedings of the 2018 International Conference on eDemocracy & eGovernment (ICEDEG), Ambato, Ecuador, 4–6 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 136–143. Available online: https://ieeexplore.ieee.org/abstract/document/8372341/figures#figures (accessed on 17 August 2025).
- Chunga, K.; Livio, F.; Mulas, M.; Ochoa-Cornejo, F.; Besenzon, D.; Ferrario, M.F.; Michetti, A.M. Earthquake Ground Effects and Intensity of the 16 April 2016 Mw7.8 Pedernales, Ecuador, Earthquake: Implications for the Source Characterization of Large Subduction Earthquakes. Bull. Seismol. Soc. Am. 2018, 108, 3384–3397. [Google Scholar] [CrossRef]
- Orejuela, I.P.; Toulkeridis, T. Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In Proceedings of the 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG), Buenos Aires, Argentina, 22–24 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 201–207. Available online: https://ieeexplore.ieee.org/abstract/document/9096879 (accessed on 17 August 2025).
- Poma, P.; Usca, M.; Fdz-Polanco, M.; Garcia-Villacres, A.; Toulkeridis, T. Landslide and environmental risk from oil spill due to the rupture of SOTE and OCP pipelines, San Rafael Falls, Amazon Basin, Ecuador. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1558–1566. Available online: https://ijaseit.insightsociety.org/index.php/ijaseit/article/view/13727 (accessed on 6 November 2025). [CrossRef]
- Pozo, M.D.R.; Izquierdo, V.J.M.; Alulema, A.C.L.; Benítez, L.d.P.L.; Sanchez, V.d.R.S.; Toulkeridis, T. Use of the heuristic model and GIS to zone landslide hazards in the Mira River Basin, Ecuador. In Information and Communication Technologies of Ecuador, Proceedings of the 8th Conference, TICEC 2020, Guayaquil, Ecuador, 25–27 November 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–257. [Google Scholar] [CrossRef]
- Salcedo, D.; Padilla Almeida, O.; Morales, B.; Toulkeridis, T. Landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of Quito, Ecuador. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 2018, 1–33. Available online: https://nhess.copernicus.org/preprints/nhess-2018-86/ (accessed on 17 August 2025).
- Macías, L.; Bonifaz, H.; Toulkeridis, T.; Pastor, J.L. Geotechnical and geophysical evaluation of the remarkable Chunchi landslide of 2021 in the Andean Ecuador. Nat. Hazards 2025, 121, 10905–10927. [Google Scholar] [CrossRef]
- Salcedo, D.; Padilla Almeida, O.; Morales, B.; Toulkeridis, T. Smart city planning based on landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of Quito, Ecuador. In Doctoral Symposium on Information and Communication Technologies-DSICT; Springer International Publishing: Cham, Switzerland, 2022; pp. 89–103. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Fielding, E.J.; Huang, M.H.; Bennett, G.L.; Liang, C.; Schulz, W.H. Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall. J. Geophys. Res. Earth Surf. 2019, 124, 1782–1797. [Google Scholar] [CrossRef]
- Leshchinsky, B.; Lehmann, P.; Or, D. Enhanced rainfall-induced shallow landslide activity following seismic disturbance—From triggering to healing. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005669. [Google Scholar] [CrossRef]
- Bendix, J.; Trachte, K.; Palacios, E.; Rollenbeck, R.; Göttlicher, D.; Nauss, T.; Bendix, A. El Niño meets la Niña—Anomalous rainfall patterns in the” traditional” el Niño region of Southern Ecuador. Erdkunde 2011, 65, 151–167. Available online: https://www.erdkunde.uni-bonn.de/article/view/2674 (accessed on 2 May 2025). [CrossRef]
- Covey, D.L.; Hastenrath, S. The pacific el nino phenomenon and the atlantic circulation. Mon. Weather. Rev. 1978, 106, 1280–1287. [Google Scholar] [CrossRef]
- Mato, F.; Toulkeridis, T. The missing link in el Niño’s phenomenon generation. Sci. Tsunami Hazards 2017, 36, 128. Available online: https://www.researchgate.net/publication/320068111_The_Missing_Link_in_El_Nino’s_Phenomenon_Generation (accessed on 2 May 2025).
- Rollenbeck, R.; Orellana-Alvear, J.; Bendix, J.; Rodriguez, R.; Pucha-Cofrep, F.; Guallpa, M.; Fries, A.; Célleri, R. The Coastal El Niño event of 2017 in Ecuador and Peru: A weather radar analysis. Remote Sens. 2022, 14, 824. [Google Scholar] [CrossRef]
- Thielen, D.R.; Ramoni-Perazzi, P.; Zamora-Ledezma, E.; Puche, M.L.; Marquez, M.; Quintero, J.I.; Rojas, W.; Quintero, A.; Bianchi, G.; Soto-Werschitz, I.A.; et al. Effect of extreme El Niño events on the precipitation of Ecuador. Nat. Hazards Earth Syst. Sci. 2023, 23, 1507–1527. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes–Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate Change according to Ecuadorian academics–Perceptions versus facts. La Granja Rev. Cienc. La Vida 2020, 31, 21–46. [Google Scholar] [CrossRef]
- Morales Donoso, K.; Reyes Pozo, D.; Cascante Almeida, G. Flood hazard assessment using geographic information systems in three cities in Ecuador at a scale of 1: 5000. Rev. Geográfica América Cent. 2025, 2215–2563. Available online: https://revistas.csuca.org/Record/GEOGRAFIA19684 (accessed on 19 October 2025).
- INEC. Base de Datos—Censo de Población y Vivienda. Instituto Nacional de Estadística Y Censos. 2022. Available online: https://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda/ (accessed on 17 August 2025).
- Ortiz-Hernández, E.; Chunga, K.; Pastor, J.L.; Toulkeridis, T. Assessing susceptibility to soil liquefaction using the standard penetration test (SPT)—A case study from the city of Portoviejo, Coastal Ecuador. Land 2022, 11, 463. [Google Scholar] [CrossRef]
- Instituto de Investigación Geológico y Energético. IIGE. (2023). Informe técnico de inspección: Deslizamiento barrio Florón—Portoviejo, provincia de Manabí (Código DSE-IT-2023-015). Dirección de Servicios Especializados. Available online: https://www.geoenergia.gob.ec/ (accessed on 17 August 2025).
- INGEOCONSA. Estudios y Diseño de Obras de Estabilización del Deslizamiento del Sector “Florón III” de la Parroquia Andrés de Vera, del Cantón Portoviejo. Gobierno Autónomo Descentralizado de Portoviejo GAD. Dirección de Riesgos, Sostenibilidad Ambiental y Cambio Climático. 2023. Available online: https://www.portoviejo.gob.ec/ (accessed on 15 July 2025).
- Ciuffi, P.; Bayer, B.; Berti, M.; Franceschini, S.; Simoni, A. InSAR stacking to detect active landslides and investigate their relation to rainfalls in the Northern Apennines of Italy. Geomorphology 2024, 457, 109242. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Masciulli, C.; Zocchi, M.; Bozzano, F.; Scarascia Mugnozza, G.; Mazzanti, P. Estimating reactivation times and velocities of slow-moving landslides via PS-InSAR and their relationship with precipitation in Central Italy. Remote Sens. 2024, 16, 3055. [Google Scholar] [CrossRef]
- Sarmiento, F.O. Geomorphology of natural hazards and human-induced disasters in Ecuador. Dev. Earth Surf. Process 2009, 13, 149–163. [Google Scholar] [CrossRef]
- Soto, J.; Palenzuela, J.A.; Galve, J.P.; Luque, J.A.; Azañón, J.M.; Tamay, J.; Irigaray, C. Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador. Bull. Eng. Geol. Environ. 2019, 78, 1971–1987. [Google Scholar] [CrossRef]
- Navas, L.; Caiza, P.; Toulkeridis, T. An evaluated comparison between the molecule and steel framing construction systems—Implications for the seismic vulnerable Ecuador. Malays. Constr. Res. J. 2018, 26, 87–109. Available online: https://www.cream.my/usr/product.aspx?pgid=88&id=49&grpid=13&lang=en (accessed on 15 July 2025).
- Sani, J.; Tierra, A.; Toulkeridis, T.; Padilla, O. Evaluation of Horizontal and Vertical Positions Obtained from an Unmanned Aircraft Vehicle Applied to Large Scale Cartography of Infrastructure Loss Due to the Earthquake of April 2016 in Ecuador. In Proceedings of the International Conference on Applied Technologies, Quito, Ecuador, 23–25 November 2022; Springer Nature: Cham, Switzerland, 2022; pp. 60–73. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Chunga, K.; Rentería, W.; Rodriguez, F.; Mato, F.; Nikolaou, S.; D’Howitt, M.C.; Besenzon, D.; Ruiz, H.; Parra, H.; et al. THE 7.8 M w EARTHQUAKE AND TSUNAMI OF 16 th April 2016 IN ECUADOR: Seismic Evaluation, Geological Field Survey and Economic Implications. Sci. Tsunami Hazards 2017, 36, 78. Available online: http://www.new.tsunamisociety.org/ (accessed on 4 August 2025).
- Secretaría Nacional de Gestión de Riesgos del Ecuador. Unidad de Monitoreo de Eventos Adversos. SNGRE. SITREP PROVINCIALES—MANABÍ. Informe de Situación No. 34. 2025. Available online: https://www.gestionderiesgos.gob.ec/afectaciones-por-lluvias-2024-2025/ (accessed on 11 April 2025).
- Suango Sanchez, V.D.R. Zonificación del paisaje con enfoque territorial en la ciudad de Portoviejo. Pro Sci. Rev. Prod. Cienc. E Investig. 2019, 3, 18–27. [Google Scholar] [CrossRef]
- Cando-Jácome, M.; Martínez-Graña, A.; Chunga, K.; Ortíz-Hernández, E. Satellite radar interferometry for assessing coseismic liquefaction in Portoviejo city, induced by the Mw 7.8 2016 Pedernales, Ecuador earthquake. Environ. Earth Sci. 2020, 79, 467. [Google Scholar] [CrossRef]
- Intriago-García, G.A.; Pacheco-Gil, H.A. Modelo de comportamiento geomecánico para la determinación de zonas inestables dentro de la ciudadela Briones, Portoviejo-Manabí, utilizando métodos geotécnicos, geofísicos y análisis de de-formación INSAR. Rev. Científica Ingeniar Ing. Tecnol. E Investig. 2022, 510, 2–21. Available online: http://journalingeniar.org/index.php/ingeniar/article/view/87 (accessed on 7 May 2025).
- Ortiz-Hernández, E.; Macias, L.; Delgado, D. Evaluación del subsuelo, y su comportamiento geotécnico en el Cantón Portoviejo, parroquia 12 de marzo. Rev. Caribeña Cienc. Soc. (RCCS) 2019, 67. Available online: https://www.eumed.net/rev/caribe/2019/12/subsuelo-comportamiento-geotecnico.html (accessed on 12 June 2025).
- Moncayo, M.Á.C.; Torrens, R.B.; Quesada, R.W. Estabilización de taludes en el río Portoviejo, Ecuador. Minería Y Geol. 2008, 24, 1–9. Available online: https://www.redalyc.org/articulo.oa?id=223515948003 (accessed on 29 October 2025).
- DIGEMI. Mapa geológico de Portoviejo a escala 1: 100.000. Dirección General de Geología y Minas. Ministerio de Recursos Naturales y Energéticos. 1975. Available online: https://www.geoenergia.gob.ec/mapas-tematicos-1-100-000/ (accessed on 17 August 2025).
- Bristow, C.R.; Hoffstetter, R.; Feininger, T.; Hall, M.T. Léxico Estratigráfico del Ecuador; Centre National de la Recherche Scientifique: Paris, France, 1977; (In Spanish). Available online: https://www.scribd.com/document/374143199/Lexique-Stratigraphique-EC-1977-BRISTOW (accessed on 24 April 2025).
- Stainforth, R.M. Applied Micropaleontology in Coastal Ecuador. J. Paleontol. 1948, 22, 113–151. Available online: http://www.jstor.org/stable/1299388 (accessed on 25 April 2025).
- Whittaker, J.E. Benthic Cenozoic Foraminifera from Ecuador: Taxonomy and Distribution of Smaller Benthic Foraminifera from Coastal Ecuador (Late Oligocene—Late Pliocene); British Museum (Nature History) Publishing: London, UK, 1988; 194p, Available online: https://cir.nii.ac.jp/crid/1970023484863624087 (accessed on 25 April 2025).
- Cedeño, A.F.C.; Guillén, P.A.S.; Álava, J.O.M. Valoración de la escorrentía de las colinas de la ciudad de Portoviejo. J. Res. Energy Environ. Technol. 2019, 4. [Google Scholar] [CrossRef]
- Norma Ecuatoriana de la Construcción. NEC-15. NEC-SE-GC: Geotecnia y Cimentaciones. 2015. Available online: https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/ (accessed on 12 September 2025).
- Pourrut, P.; Róvere, O.; Romo, I.; Villacrés, H. Clima del Ecuador. In El Agua en el Ecuador: Clima, Precipitaciones, Escorrentía; Institut de Recherche Pour le Développement: Marseille, France, 1995; pp. 13–26. Available online: http://www.documentation.ird.fr/hor/fdi:010014831 (accessed on 6 May 2025).
- Velez, S.M.P.; Espinoza, G.A.P.; Erazo, S.J.H.; Macías, L.A.V. Evaluación integral de la vulnerabilidad comunitaria a desastres de la Parroquia de Picoazá del Cantón Portoviejo. Reincisol 2024, 3, 2875–2894. [Google Scholar] [CrossRef]
- Thielen, D.; Cevallos, J.; Erazo, T.; Zurita, I.; Figueroa, J.; Velásquez, G.; Matute, N.; Quintero, J.; Puche, M. Dinámica espacio-temporal de las precipitaciones durante el evento de El Niño 97/98 en la cuenca de Río Portoviejo, Manabí, costa ecuatoriana del Pacífico. Rev. Climatol. 2016, 16, 35–50. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=7414793 (accessed on 5 May 2025).
- Coronado Franco, K.V.; Selvaraj, J.J.; Guzmán Alvis, A.I. Efecto del fenómeno El Niño en la productividad primaria en el Pacífico colombiano. Acta Agronómica 2012, 61, 7–8. Available online: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/41434 (accessed on 14 April 2025).
- Salazar Vallejo, G.E.; Ortiz León, C.; Ruiz Suing, A. Fenómeno de El Niño en Ecuador su impacto en televisión y redes sociales. Redes. Com Rev. Estud. Para El Desarro. Soc. La Comun. 2016, 197–216. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5768473 (accessed on 14 May 2025).
- Salazar, V.E.L.; Camacho, J.A.P.; Rosillo, N.G.B. Percepción del riesgo de la población ante amenazas de sismo, inundación y deslizamiento del cantón Portoviejo. Rev. San Gregor. 2022, 1, 1–18. Available online: http://scielo.senescyt.gob.ec/pdf/rsan/v1n50/2528-7907-rsan-1-50-00001.pdf (accessed on 17 August 2025).
- Santana Castro, A.G.; Montilla Pacheco, A.J.; Jarre Castro, E.J. Geomática aplicada a la cartografía de desastres en el cantón Portoviejo, Manabí, Ecuador. ULEAM Bahía Mag. (UBM) 2025, 6, 17. [Google Scholar] [CrossRef]
- Instituto Nacional de Meterología e Hidrología, Dirección Campus Gustavo Galindo ESPOL-Bloque 5D, Guayaquil. INAMHI. Situación Climática Actual y Perspectivas. 2023. Available online: https://www.inamhi.gob.ec (accessed on 12 April 2025).
- Raghuraman, S.P.; Soden, B.; Clement, A.; Vecchi, G.; Menemenlis, S.; Yang, W. The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmos. Chem. Phys. 2024, 24, 11275–11283. [Google Scholar] [CrossRef]
- Geng, X.; Kug, J.S.; Shin, N.Y.; Zhang, W.; Chen, H.C. Sobre el doble pico espacial del fenómeno de El Niño 2023-2024. Commun. Earth Environ. 2024, 5, 691. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.P.; Passalacqua, G.A.; Miyamoto, A.; Deser, C. The 2023 extreme coastal El Niño: Atmospheric and air-sea coupling mechanisms. Sci. Adv. 2024, 10, eadk8646. [Google Scholar] [CrossRef]
- Data Access Viewer Power NASA. 2025. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 12 April 2025).
- Vincenti, S.S.; Zuleta, D.; Moscoso, V.; Jácome, P.; Palacios, E.; Villacís, M. Análisis estadístico de datos meteoroló-gicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. La Granja 2012, 16, 23–47. Available online: https://dspace.ups.edu.ec/handle/123456789/8828 (accessed on 16 July 2025). [CrossRef]
- Abhik, S.; Dommenget, D.; McGregor, S.; Hutchinson, D.K.; Steinig, S.; Zhu, J.; Capitanio, F.A.; Lunt, D.J.; Niezgodzki, I.; Knorr, G.; et al. Stronger and pro-longed El Niño-Southern Oscillation in the Early Eocene warmth. Nat. Commun. 2025, 16, 4053. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.S. Assessment of the Global Climatic Impacts due to El Nino and La Nina Events. J. Glob. Ecol. Environ. 2025, 21, 1–26. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Borgatti, L. The importance of rock mass damage in the kinematics of land-slides. Geosciences 2023, 13, 52. [Google Scholar] [CrossRef]
- Francioni, M.; Stead, D.; Sciarra, N.; Calamita, F. A new approach for defining Slope Mass Rating in heterogeneous sedimentary rocks using a combined remote sensing GIS approach. Bull. Eng. Geol. Environ. 2019, 78, 4253–4274. [Google Scholar] [CrossRef]
- Li, L.; Lan, H.; Strom, A.; Macciotta, R. Landslide length, width, and aspect ratio: Path-dependent measurement and a revisit of nomenclature. Landslides 2022, 19, 3009–3029. [Google Scholar] [CrossRef]
- Nnamani, C.H. The chemical and mineralogical composition and their effects on strength parameters of cohesive soil developed over Enugu Shale. Eur. J. Environ. Earth Sci. 2022, 3, 28–35. [Google Scholar] [CrossRef]
- Sadeghi, H.; Kiani, M.; Sadeghi, M.; Jafarzadeh, F. Geotechnical characterization and collapsibility of a natural dispersive loess. Eng. Geol. 2019, 250, 89–100. [Google Scholar] [CrossRef]
- Daftaribesheli, A.; Ataei, M.; Sereshki, F. Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system. Appl. Soft Comput. 2011, 11, 4465–4473. [Google Scholar] [CrossRef]
- Tomás, R.; Delgado, J.; Serón, J.B. Modification of slope mass rating (SMR) by continuous functions. Int. J. Rock Mech. Min. Sci. 2007, 44, 1062–1069. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Tomás, R.; Abellán, A. Characterization of rock slopes through slope mass rating using 3D point clouds. Int. J. Rock Mech. Min. Sci. 2016, 84, 165–176. [Google Scholar] [CrossRef]
- Singh, R. A Windows software for estimation of Slope Mass Rating (SMR). In New Challenges in Rock Mechanics and Rock Engineering; CRC Press: Boca Raton, FL, USA, 2024; pp. 1245–1249. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003429234-190/windows-software-estimation-slope-mass-rating-smr-rajesh-singh (accessed on 10 October 2025).
- Rafiei Renani, H.; Martin, C.D. Slope stability analysis using equivalent Mohr–Coulomb and Hoek–Brown criteria. Rock Mech. Rock Eng. 2020, 53, 13–21. [Google Scholar] [CrossRef]
- Zhao, J. Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int. J. Rock Mech. Min. Sci. 2000, 37, 1115–1121. [Google Scholar] [CrossRef]
- Fanourakis, G.C. Utilising Land Type data for geotechnical investigations. J. S. Afr. Inst. Civ. Eng. 2022, 64, 12–24. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Aziman, M.; Hazreek, Z.A.M.; Azhar, A.T.S.; Haimi, D.S. Compressive and shear wave velocity profiles using seismic refraction technique. J. Phys. Conf. Ser. 2016, 710, 012011. [Google Scholar] [CrossRef]
- Pegah, E.; Liu, H. Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: A case study. Eng. Geol. 2016, 208, 100–113. [Google Scholar] [CrossRef]
- Syukri, M.; Muztaza, N.M.; Ismail, N.A.; Fadhli, Z.; Saad, R. Identifying shallow subsurface characteristics via compressional to shear waves velocity ratio (vp/vs) from seismic refraction tomography. J. Teknol. (Sci. Eng.) 2020, 83, 67–73. [Google Scholar] [CrossRef]
- Bashir, Y.; Akdeniz, D.N.; Balci, D.; Soner, M.; Ozturk, D.U.; Tekin, M.; Doğan, D.; Karaman, A.; İmren, C. 3D geo-seismic data enhancement leveraging geophysical attributes for hydrocarbon prospect and geological illumination. Phys. Chem. Earth 2025, 138, 103854. [Google Scholar] [CrossRef]
- Cross, T.A.; Lessenger, M.A. Seismic stratigraphy. Annu. Rev. Earth Planet. Sci. 1988, 16, 319. [Google Scholar] [CrossRef]
- Benmakhlouf, M.; Salvini, R.; Vanneschi, C. Slope stability analyses and geological risk reduction: Two case studies, from engineering-geological characterization to rockfall runout modeling with intervention proposal. Recl. Des Résumes 3ème JJCG-2019 2019, 1, 114. Available online: https://hdl.handle.net/11365/1072114 (accessed on 23 October 2025).
- Guillén, N.R.E.; Triana, J.A.A.; Martínez, L.A.G. On the Use of Dips and RocFall for Designing Structures in Highly Fractured Igneous Rocks in the Chilean Patagonia. In Rocscience International Conference (RIC 2023); Atlantis Press: Dordrecht, The Netherlands, 2023; pp. 820–826. [Google Scholar] [CrossRef]
- Castaldo, P.; Gino, D.; Bertagnoli, G.; Mancini, G. Partial safety factor for resistance model uncertainties in 2D non-linear finite element analysis of reinforced concrete structures. Eng. Struct. 2018, 176, 746–762. [Google Scholar] [CrossRef]
- Farias, M.M.; Naylor, D.J. Safety analysis using finite elements. Comput. Geotech. 1998, 22, 165–181. [Google Scholar] [CrossRef]
- Zheng, H.; Tham, L.G.; Liu, D. On two definitions of the factor of safety commonly used in the finite element slope stability analysis. Comput. Geotech. 2006, 33, 188–195. [Google Scholar] [CrossRef]
- Kanamori, H.; McNally, K.C. Variable rupture mode of the subduction zone along the Ecuador-Colombia coast. Bull. Seismol. Soc. Am. 1982, 72, 1241–1253. Available online: https://scholar.google.com/scholar_lookup?hl=en&volume=72&publication_year=1982&pages=1241-1253&journal=Bull.+Seismol.+Soc.+Am.&author=H.+Kanamori&author=K.+C.+McNally&title=Variable+rupture+mode+of+the+subduction+zone+along+the+Ecuador%E2%80%93Colombia+coast (accessed on 17 August 2025).
- Lonsdale, P. Ecuadorian subduction system. AAPG Bull. 1978, 62, 2454–2477. [Google Scholar] [CrossRef]
- Daly, M.C. Correlations between Nazca/Farallon plate kinematics and forearc basin evolution in Ecuador. Tectonics 1989, 8, 769–790. [Google Scholar] [CrossRef]
- Gailler, A.; Charvis, P.; Flueh, E.R. Segmentation of the Nazca and South American plates along the Ecuador sub-duction zone from wide angle seismic profiles. Earth Planet. Sci. Lett. 2007, 260, 444–464. [Google Scholar] [CrossRef]
- Ortiz-Hernández, E.; Chunga, K.; Toulkeridis, T.; Pastor, J.L. Soil Liquefaction and Other Seismic-Associated Phenomena in the City of Chone during the 2016 Earthquake of Coastal Ecuador. Appl. Sci. 2022, 12, 7867. [Google Scholar] [CrossRef]
- Pedoja, K.; Dumont, J.; Lamothe, M.; Ortlieb, L.; Collot, J.-Y.; Ghaleb, B.; Auclair, M.; Alvarez, V.; Labrousse, B. Plio-Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. J. S. Am. Earth Sci. 2006, 22, 1–21. [Google Scholar] [CrossRef]
- Chalumeau, C.; Agurto-Detzel, H.; De Barros, L.; Charvis, P.; Galve, A.; Rietbrock, A.; Alvarado, A.; Hernandez, S.; Beck, S.; Font, Y.; et al. Repeating earthquakes at the edge of the afterslip of the 2016 Ecuadorian MW7. 8 Pedernales earthquake. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021746. [Google Scholar] [CrossRef]
- Graindorge, D.; Calahorrano, A.; Charvis, P.; Collot, J.Y.; Bethoux, N. Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Porras, L.; Tierra, A.; Toulkeridis-Estrella, K.; Cisneros, D.; Luna, M.; Carrión, J.L.; Herrera, M.; Murillo, A.; Salinas, J.C.P.; et al. Two independent real-time precursors of the 7.8 Mw earthquake in Ecuador based on radioactive and geodetic processes—Powerful tools for an early warning system. J. Geodyn. 2019, 126, 12–22. [Google Scholar] [CrossRef]
- Norma Ecuatoriana de la Construcción NEC-15. NEC-SE-DS: Peligro Sísmico, Diseño Sismo Resistente Parte 1. 2015. Available online: https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/ (accessed on 5 November 2025).
- Avilés-Campoverde, D.; Chunga, K.; Ortiz-Hernández, E.; Vivas-Espinoza, E.; Toulkeridis, T.; Morales-Delgado, A.; Del-gado-Toala, D. Seismically induced soil liquefaction and geological conditions in the city of Jama due to the M7. 8 Pedernales Earthquake in 2016, NW Ecuador. Geosciences 2020, 11, 20. [Google Scholar] [CrossRef]
- Ubanell, A.G. Características Principales de la Fracturación Tardihercínica en un Segmento del Sistema Central Español. 1981. Available online: http://hdl.handle.net/10261/6200 (accessed on 5 August 2025).
- Sennson, J.L.; Beck, S.L. Historical 1942 Ecuador and 1942 Peru subduction earthquakes and earthquake cycles along Colombia-Ecuador and Peru subduction segments. Pure Appl. Geophys. 1996, 146, 67–101. [Google Scholar] [CrossRef]
- Suárez, G.; Molnar, P.; Burchfiel, B.C. Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia. J. Geophys. Res. Solid Earth 1983, 88, 10403–10428. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Gómez, J.A.Á.; Staller, A.; Luna, M.P.; Pérez-López, R.; Monserrat, O.; Chunga, K.; Lima, A.; Galve, J.P.; Díaz, J.J.M.; et al. In-SAR-based mapping to support decision-making after an earthquake. Remote Sens. 2018, 10, 899. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Instituto Geofísico de la Escuela Politécnica Nacional IGEPN. 2025. Available online: https://www.igepn.edu.ec/portal/eventos/informes-ultimos-sismosM.html (accessed on 22 May 2025).
- National Earthquake Information Center Institute. (NEIC). 2025. Available online: https://www.usgs.gov/search?keywords=NEIC (accessed on 22 May 2025).
- United States Geological Survey. (USGS). 2025. Available online: https://www.usgs.gov/ (accessed on 16 July 2025).
- Slemmons, D.B.; De Polo, C.M. Evaluation of active faulting and associated hazard. In Active Tectonics; Wallace, R.E., Ed.; National Academy Press: Washington, DC, USA, 1986; pp. 45–62. Available online: https://nap.nationalacademies.org/read/624/chapter/5 (accessed on 3 June 2025).
- Fukushima, Y.; Tanaka, T. A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan. Bull. Seismol. Soc. Am. 1990, 80, 757–783. Available online: https://gbank.gsj.jp/ld/resource/geolis/199000572 (accessed on 17 August 2025).
- Rigail-Cedeño, A.F.; Cornejo, M.H.; Cáceres-Zambrano, J.A.; Alava-Rosado, J.S.; García-Mejía, G. Intercalation of Nontronite Clays from Santa Elena, Ecuador, Using Different Surfactant Hydrophobicity. Minerals 2023, 13, 272. [Google Scholar] [CrossRef]
- Deere, D. The rock quality designation (RQD) index in practice. In Rock Classification Systems for Engineering Purposes; ASTM International: West Conshohocken, PA, USA, 1988; pp. 91–101. [Google Scholar] [CrossRef]
- Rehman, H.; Ali, W.; Naji, A.M.; Kim, J.-J.; Abdullah, R.A.; Yoo, H.-K. Revisión de sistemas de calificación de macizo rocoso e índices de calidad de tunelaje para el diseño de túneles: Desarrollo, refinamiento, aplicación y limitaciones. Appl. Sci. 2018, 8, 1250. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Look, B.G. Handbook of Geotechnical Investigation and Design Tables, 1st ed.; Taylor & Francis eBooks: London, UK, 2007. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, X. Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat. Hazards 2010, 54, 839–850. [Google Scholar] [CrossRef]
- Huning, L.S.; Love, C.A.; Anjileli, H.; Vahedifard, F.; Zhao, Y.; Chaffe, P.L.B.; Cooper, K.; Alborzi, A.; Pleitez, E.; Martinez, A.; et al. Global land subsidence: Impact of climate extremes and human activities. Rev. Geophys. 2024, 62, e2023RG000817. [Google Scholar] [CrossRef]
- Quigley, M.C.; Hughes, M.W.; Bradley, B.A.; van Ballegooy, S.; Reid, C.; Morgenroth, J.; Horton, T.; Duffy, B.; Pettinga, J.R. The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 2016, 672, 228–274. [Google Scholar] [CrossRef]
- Bejarbaneh, B.Y.; Armaghani, D.J.; Amin, M.F.M. Strength characterisation of shale using Mohr–Coulomb and Hoek–Brown criteria. Measurement 2015, 63, 269–281. [Google Scholar] [CrossRef]
- Lee, Y.K.; Pietruszczak, S.; Choi, B.H. Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int. J. Rock Mech. Min. Sci. 2012, 56, 146–160. [Google Scholar] [CrossRef]
- Flores, B.I.; Rodríguez, O.J.; García, M.S.; Gonzáles, H.Y.; García, T.J. Efecto de la permeabilidad en el factor de seguridad de presas de tierra bajo precipitaciones. Ing. y Desarro. 2025, 43, 24–43. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Y.; Liu, X.; Li, L. Spatial—Temporal variation of soil sliding probability in cohesive slopes with spatially variable soils. Int. J. Geomech. 2021, 21, 04020263. [Google Scholar] [CrossRef]
- GCAlgerie. GEOSLOPE GeoStudio 2018. 2024. Available online: https://www.gcalgerie.com/geoslope-geostudio-2018/ (accessed on 11 August 2025).
- GeoStudio, Manual Tutorial. GEO-SLOPE International Ltd. 2004. Available online: www.geo-slope.com (accessed on 5 October 2025).
- Bar, N.; Barton, N. The Q-slope method for rock slope engineering. Rock Mech. Rock Eng. 2017, 50, 3307–3322. [Google Scholar] [CrossRef]
- Bar, N.; Barton, N. Rock slope design using Q-slope and geophysical survey data. Period. Polytech. Civ. Eng. 2018, 62, 893–900. [Google Scholar] [CrossRef]
- Bojorque Iñeguez, J.A. Métodos Para el Análisis de la Estabilidad de Pendientes. 2011. Available online: https://dspace.ucuenca.edu.ec/items/1cd24ed1-d16c-4f3e-b101-b42f8ee8727e (accessed on 11 August 2025).
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Monteiro, L.S.V.E.; Bandarra, B.S.; Quina, M.J.; Coelho, P.A.L.F. A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions. Constr. Build. Mater. 2024, 455, 139139. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Géotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Sanhueza Plaza, C.; Rodríguez Cifuentes, L. Análisis comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales. Rev. La Construcción 2013, 12, 17–29. [Google Scholar] [CrossRef]
- Bruce, D.A.; Juran, I. Micropiles Perforados e Inyectados con Lechada: State-of-Practice Review. U.S. Department of Transportation—Federal Highway Administration. 1997. Available online: https://rosap.ntl.bts.gov/view/dot/6813 (accessed on 7 September 2025).
- CTE. Código Técnico de la Edificación; BOE número 74; Ministerio de Transportes y Movilidad de España: Madrid, España, 2006; págs. 11816–11831. Available online: https://www.codigotecnico.org/index.html (accessed on 13 June 2025).










| Geological Units | Thickness of Sediments | USCS Soil Type | Geological Age | Average Shear Velocity Meters |
|---|---|---|---|---|
| Fill | 1 ≤ m ≤ 4 | MH and waste materials | Modern | 110 ≤ Vs ≤ 150 |
| Alluvium Plain Deposits (Qa) | 4 ≤ m ≤ 18 | CL, CH | Holocene | 130 ≤ Vs ≤ 175 |
| Ancient Alluvium Plain Deposits (Qaa) | 8 ≤ m ≤ 20 | CL, CH, ML | Holocene to Late Pleistocene | 160 ≤ Vs ≤ 260 |
| Levee Channel Deposit (Qaa) | 2 ≤ m ≤ 6 | SM, MH | Holocene to Late | 150 ≤ Vs ≤ 230 |
| Colluvium Deposits (Qc) | 6 ≤ m ≤ 15 | MH, ML | Late Pleistocene | 180 ≤ Vs ≤ 260 |
| Piedmont Alluvial Deposit (Qpa) | 6 ≤ m ≤ 16 | ML, MH | Late Pleistocene | 180 ≤ Vs ≤ 280 |
| Ancient Colluvium Alluvium Deposits (Qca) | 4 ≤ m ≤ 30 | MH, ML | Late Pleistocene | 130 ≤ Vs ≤ 260 |
| Alluvial Valley Fill Deposit (Qaf) | 15 ≤ m ≤ 4 | ML, MH, SM | Middle Pleistocene | 300 ≤ Vs ≤ 50 |
| Soft Rock (Msc) | ˃20 m | Siltstone, Claystone | Miocene | Vs ˃ 650 m/s |
| Capable Fault | Type | Fault Length (km) | Fault Depth (km) | Distance to Portoviejo (km) | Dip Slip Fault | Fault Width (km) | Max Offset (m) | Estimated Magnitude from Type Fault (Mw) | PGA-Rock (g) | Fault Geometry, Rrup |
|---|---|---|---|---|---|---|---|---|---|---|
| F1 (100%) | Shear fault | 14 | 12 | 15 | 85 | 7 | 0.8 | 6.55 | 0.33 | 16 |
| F1 (60%) | Shear fault | 8 | 12 | 15 | 85 | 6 | 0.6 | 6.36 | 0.30 | 16 |
| F2 (100%) | Normal | 26 | 15 | 19 | 60 | 9 | 1.1 | 6.78 | 0.32 | 24 |
| F2 (60%) | Normal | 16 | 15 | 19 | 60 | 8 | 0.8 | 6.68 | 0.30 | 24 |
| F3 (100%) | Shear fault | 16 | 12 | 16 | 85 | 8 | 0.9 | 6.60 | 0.33 | 17 |
| F3 (60%) | Shear fault | 9 | 12 | 16 | 85 | 7 | 0.7 | 6.41 | 0.31 | 17 |
| F4 (100%) | Inverse | 25 | 15 | 4 | 60 | 9 | 1.1 | 6.75 | 0.31 | 11 |
| F4 (60%) | Inverse | 15 | 15 | 4 | 60 | 8 | 0.8 | 6.34 | 0.26 | 11 |
| F5 (100%) | Inverse | 25 | 15 | 14 | 60 | 9 | 1.1 | 6.75 | 0.31 | 19 |
| F5 (60%) | Inverse | 15 | 15 | 14 | 60 | 8 | 0.8 | 6.33 | 0.26 | 19 |
| F6 (100%) | Strike-slip fault | 15 | 12 | 16 | 85 | 8 | 0.8 | 6.59 | 0.33 | 17 |
| F6 (60%) | Strike-slip fault | 9 | 12 | 16 | 85 | 7 | 0.7 | 6.59 | 0.33 | 22 |
| Layer | Description | SUCS | γ (Kn/m3) | Vs (m/s) | Post Landslide | Collapse (Retroanalysis) | ||
|---|---|---|---|---|---|---|---|---|
| c (kPa) | φ (°) | c (kPa) | φ (°) | |||||
| U1 | Clayey silt with fine sand, inclusion of angular claystone clasts | CH | 16 | 180–210 | 14.33 | 16 | 14.41 | 15.96 |
| U2 | Silt clay with angular fragments of shale | CL | 17 | 220–310 | 15.99 | 17 | 20.75 | 21.65 |
| U3 | Shale firm and well fractured | MH | 19 | 310–540 | 34 | 18 | 33.80 | 18 |
| U4 | Stiff claystone | CH | 20 | 500–760 | 40 | 20 | 21.55 | 20 |
| U5 | Very stiff shale | CH | 21 | 760–900 | 50 | 21 | 50 | 21 |
| Parameters | Values | Safety Factor | Shear Strength |
|---|---|---|---|
| Diameter (m) | 0.25 | FS = c × α | Qf = Ʃp × L × fs |
| Pi (π) | 3.1416 | ||
| Perimeter (m) | 0.7854 | ||
| Length (m) | 35 | 20.75 | 570.395 |
| Cohesion (kPa) | 20.75 | ||
| Adherence factor (α) | 1 |
| # | Depth of the Groundwater Level | FS |
|---|---|---|
| 1 | 0 | 1.055 |
| 2 | −1 | 1.060 |
| 3 | −2 | 1.062 |
| 4 | −3 | 1.064 |
| 5 | −4 | 1.066 |
| 6 | −5 | 1.068 |
| 7 | −6 | 1.070 |
| 8 | −7 | 1.071 |
| 9 | −8 | 1.073 |
| 10 | −9 | 1.074 |
| 11 | −10 | 1.076 |
| 12 | −11 | 1.077 |
| 13 | −12 | 1.078 |
| Description of the Analyzed Geometry | FS Static | FS Pseudo-Static (kh = 0.354 g) |
|---|---|---|
| Retrospective slope prior to the event | 1.000 | 0.373 |
| Slope after the event | 1.290 | 0.522 |
| Slope with a geotechnical stabilization solution | 2.515 | 1.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgar, M.; Ramírez-Cevallos, N.; Chunga, K.; Toulkeridis, T. Rain- and Seismic-Triggered Mass Movements in Coastal Ecuador—A Case Study of the “El Florón” Landslide in Portoviejo. Earth 2025, 6, 156. https://doi.org/10.3390/earth6040156
Melgar M, Ramírez-Cevallos N, Chunga K, Toulkeridis T. Rain- and Seismic-Triggered Mass Movements in Coastal Ecuador—A Case Study of the “El Florón” Landslide in Portoviejo. Earth. 2025; 6(4):156. https://doi.org/10.3390/earth6040156
Chicago/Turabian StyleMelgar, Melany, Nayeska Ramírez-Cevallos, Kervin Chunga, and Theofilos Toulkeridis. 2025. "Rain- and Seismic-Triggered Mass Movements in Coastal Ecuador—A Case Study of the “El Florón” Landslide in Portoviejo" Earth 6, no. 4: 156. https://doi.org/10.3390/earth6040156
APA StyleMelgar, M., Ramírez-Cevallos, N., Chunga, K., & Toulkeridis, T. (2025). Rain- and Seismic-Triggered Mass Movements in Coastal Ecuador—A Case Study of the “El Florón” Landslide in Portoviejo. Earth, 6(4), 156. https://doi.org/10.3390/earth6040156

