Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas
Abstract
1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
2.2.1. Precipitation Data
2.2.2. Environmental Variable Data
3. Methods
3.1. Downscaling Transformation
- (1)
- Data preparation. Based on Python programming 3.10, the IMERG data were subjected to format conversion, angle rotation, coordinate definition, and unit conversion to obtain the precipitation distribution data for Sichuan Province in January and August 2020, with a spatial resolution of 10 km. The DEM was resampled to 1 km and 10 km, and the corresponding elevation, slope, and aspect information were extracted at each resolution. Kriging interpolation was applied to the observed station data for predominant wind direction, and the data were sampled to 1 km and 10 km to calculate the corresponding WWN at each resolution. The MOD13A3, TRIMS LST, temperature, and wind speed data were synthesized monthly and then sampled to 1 km and 10 km by inverse distance weighting.
- (2)
- Factor testing. The spatial autocorrelation of the precipitation-dependent variables and the multicollinearity of the influencing factors were tested to analyze the precipitation distribution and select the explanatory factor for the regression model.
- (3)
- Establishing a regression model at 10 km low resolution. The MGWR and RF models were used to establish regression models between the IMERG data for Sichuan Province at a 10 km resolution and the environmental variables, thereby determining the regression relationship between the two.
- (4)
- Predicting precipitation distribution at 1 km high resolution. Based on the regression relationship established at 10 km low resolution, the environmental variables at 1 km high resolution were used to predict the precipitation distribution at 1 km resolution.
3.2. Regression Model
3.2.1. Multi-Scale Geographically Weighted Regression Model (MGWR)
3.2.2. Random Forest Model (RF)
3.3. Evaluation Indicators
4. Results and Analysis
4.1. Environmental Variables Correlation
4.2. IMERG Precipitation Validation
4.2.1. Spatial Distribution
4.2.2. Accuracy
4.3. Downscaling Results
4.3.1. Changes in Precipitation Spatial Distribution
4.3.2. Changes in Precipitation Accuracy
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wei, J. Evaluation of the Gridded Cru Ts Precipitation Dataset with the Point Raingauge Records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Germann, U.; Berenguer, M.; Sempere-Torres, D.; Zappa, M. Real—Ensemble Radar Precipitation Estimation for Hydrology in a Mountainous Region. Q. J. R. Meteorol. Soc. 2009, 135, 445–456. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of Gpm-Imerg and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Kidd, C.; Takayabu, Y.N.; Skofronick-Jackson, G.M.; Huffman, G.J.; Turk, F.J. The Global Precipitation Measurement (Gpm) Mission; Springer International Publishing: Cham, Germany, 2020. [Google Scholar]
- Fei, Y.; Limin, Z.; Khin, W.; Liliang, R.; Chongxu, Z.; Yonghua, Z.; Shanhu, J.; Yi, L. Assessment of Gpm and Trmm Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar]
- Bernini, L.; Lagasio, M.; Milelli, M.; Oberto, E.; Parodi, A.; Hachinger, S. Convection-permitting dynamical downscaling of ERA5 for Europe and the Mediterranean basin. Q. J. R. Meteorol. Soc. 2025, 2025, e5014. [Google Scholar] [CrossRef]
- Liu, C.M.; Liu, W.B.; Fu, G.B.; Ouyang, J.L. A discussion of some aspects of statistical downscaling in climate impacts assessment. Adv. Water Sci. 2012, 23, 427–437. [Google Scholar]
- Jia, S.; Zhu, W.; Aifeng, L.; Yan, T. A Statistical Spatial Downscaling Algorithm of Trmm Precipitation Based on Ndvi and Dem in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Yao, F. Spatial Downscaling of Trmm Precipitation Using an Optimal Regression Model with Ndvi in Inner Mongolia, China. Water Resour. 2020, 47, 1054–1064. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M.; Gutiérrez, J.M. Statistical Downscaling Skill Under Present Climate Conditions: A Synthesis of the Value Perfect Predictor Experiment; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.B.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from Trmm3b43 Product Using Spatial Downscaling Approach. Remote Sens. 2015, 7, 5849–5878. [Google Scholar] [CrossRef]
- Sun, A.Y.; Tang, G. Downscaling Satellite and Reanalysis Precipitation Products Using Attention-Based Deep Convolutional Neural Nets. Front. Water 2020, 2, 536743. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of Spatial Predictor Variable Selection in Machine Learning Applications—Moving from Data Reproduction to Spatial Prediction. Ecol. Model. 2019, 411, 108815. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- Wai, P.; Su, H.; Li, M. Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms. Remote Sens. 2022, 14, 2146. [Google Scholar] [CrossRef]
- Gu, J.; Ye, Y.; Jiang, Y.; Dong, J.; Cao, Y.; Huang, J.; Guan, H. A Downscaling-Calibrating Framework for Generating Gridded Daily Precipitation Estimates with a High Spatial Resolution. J. Hydrol. 2023, 626, 130371. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.J.; Zaman, M.; Guo, Y.; Zhang, X. Accounting for Non-Stationary Relationships between Precipitation and Environmental Variables for Downscaling Monthly Trmm Precipitation in the Upper Indus Basin. Remote Sens. 2023, 15, 4356. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (Mgwr). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, H.B.; Yang, T.Z.; Lv, F.G.; Wang, Y.W.; Yao, C.C. A MGWR-based spatial downscaling for TRMM precipitation in the Weihe River Basin. Trans. Chin. Soc. Agric. Eng. 2022, 38, 141–151. [Google Scholar]
- Bo, H.; Ming, X.S.; Liu, Q.H.; Huang, C. Downscaling of GPM satellite precipitation data in the Yellow River Basin based on MGWR model. Arid Land Geogr. 2023, 46, 1052–1062. [Google Scholar]
- Wang, L.; Li, Y.; Gan, Y.; Zhao, L.; Fan, L.; Qin, W.; Ding, L. Reconstructing High-Resolution Gridded Precipitation Data in the Southwest China Highland Canyon Area Using an Improved (Mgwr) Downscaling Method. Sci. Total Environ. 2024, 948, 174866. [Google Scholar] [CrossRef]
- Chen, C.; Hu, B.; Li, Y. Easy-to-Use Spatial Random-Forest-Based Downscaling-Calibration Method for Producing Precipitation Data with High Resolution and High Accuracy. Hydrol. Earth Syst. Sci. 2021, 25, 5667–5682. [Google Scholar] [CrossRef]
- Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.-S. A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging. Remote Sens. 2021, 13, 2040. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Iqbal, J. Variation Patterns of Extreme Precipitation and Relation to Ocean-Atmospheric Climate in Sichuan Province China from 1961 to 2017. Theor. Appl. Climatol. 2019, 137, 3009–3026. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; He, Z.X.; Yin, Y.H.; Liao, Y.M. The climate regionalization in China for 1981–2010. Chin. Sci. Bull. 2013, 58, 3088–3099. [Google Scholar]
- Zheng, J.Y.; Yin, Y.H.; Li, B.Y. A new scheme for climate regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. [Google Scholar]
- Qu, L.S.; Zhu, Q.A.; Zhu, C.F.; Zhang, C. Monthly Precipitation Data Set with 1 km Resolution in China from 1960 to 2020. Science Data Bank [2022-04-15] 2022. Available online: https://www.scidb.cn/en/cstr/31253.11.sciencedb.01607 (accessed on 1 January 2022).
- Smith, R.B.; Barstad, I. A Linear Theory of Orographic Precipitation. J. Atmos. Sci. 2004, 61, 1377–1391. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a Complete Himalayan Hydrological Budget: Spatiotemporal Distribution of Snowmelt and Rainfall and Their Impact on River Discharge. J. Geophys. Res. 2010, 115, F03019. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhang, Z.Y.; Liu, L.; Zhang, X.L.; Kang, Z.W. Spatio-temporal pattern and attribution analysis of mass elevation effect in Tianshan Mountains of China. Acta Geogr. Sin. 2023, 78, 1254–1270. [Google Scholar] [CrossRef]
- Gao, H.B.; Jiao, K.W.; Wu, S.B. Climate impact analysis on spatial heterogeneity of NDVI in China from 1982 to 2013. Acta Geogr. Sin. 2019, 74, 534–543. [Google Scholar]
- Li, L.; Zha, Y.; Wang, R. Relationship of Surface Urban Heat Island with Air Temperature and Precipitation in Global Large Cities. Ecol. Indic. 2020, 117, 106683. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.D.; Tang, W.B.; Ding, L.R.; Ma, J.; Zhang, X. Daily 1-km All-Weather Land Surface Temperature Dataset for the China’s Landmass and Its Surrounding Areas (Trims Lst; 2000–2022); Chinese National Tibetan Plateau Data Center: Beijing, China, 2021; Available online: https://cstr.cn/18406.11.Meteoro.tpdc.271252 (accessed on 1 January 2022).
- Over, T.M.; Gupta, V.K. A space-time theory of mesoscale ranifall using randon cascades. J. Geophys. Res.-Atmos. 1996, 101, 26319–26331. [Google Scholar] [CrossRef]
- Mandapaka, P.V.; Qin, X.S. A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore. Theor. Appl. Climatol. 2015, 122, 685–697. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. Mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2015, 25, 197–227. [Google Scholar] [CrossRef]
- Yusuke, H.; Ryotaro, T. Sensitivity of localized heavy rainfall in Northern Japan to WRF physics parameterization schemes. Atmos. Res. 2025, 314, 107802. [Google Scholar]
- Su, D.; Zhong, J.; Xu, Y.; Lv, L.; Liu, H.; Fan, X.; Han, L.; Wang, F. SAL Method Applied in Grid Forecasting Product Verification with Three-Source Fusion Product. Atmosphere 2024, 15, 1366. [Google Scholar] [CrossRef]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Fotheringham, A.S. “The Problem of Spatial Autocorrelation” and Local Spatial Statistics. Geogr. Anal. 2009, 41, 398–403. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M. Precipitation Downscaling under Climate Change: Recent Developments to Bridge the Gap between Dynamical Models and the End User. Rev. Geophys. 2010, 48, 1–34. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. Downscaling of Satellite-Based Precipitation Considering the Spatially Heterogeneous Relationship between Precipitation and Environmental Variables. Phys. Geogr. Q. 2022, 14, 109–126. [Google Scholar]
- Zhen, R.; Chen, L.J.; Li, W.J.; Wang, S.J.; Ma, Z.F.; Liang, N.; Liu, J.H.M. Interannual Variation of the Leading Modes of Summertime Precipitation in the Sichuan Basin. Chin. J. Atmos. Sci. 2022, 46, 1454–1468. [Google Scholar]
- Yuan, J.; Wang, X.; Feng, Z.; Zhang, Y.; Yu, M. Spatiotemporal Variations of Aerosol Optical Depth and the Spatial Heterogeneity Relationship of Potential Factors Based on the Multi-Scale Geographically Weighted Regression Model in Chinese National-Level Urban Agglomerations. Remote Sens. 2023, 15, 4613. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wu, S.; Du, Z. House Price Valuation Model Based on Geographically Neural Network Weighted Regression: The Case Study of Shenzhen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 450. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhang, F.H.; Zhao, Y.Y.; Chou, A.H. Regionally geographically weighted regression methon. Bull. Surv. Map 2023, 12, 81–87. [Google Scholar] [CrossRef]
Climate Zone | Precipitation (mm/a) | Average Temperature (°C/a) | Climatic Characteristics |
---|---|---|---|
Sichuan Basin—tropical and humid zone | 1000~1300 | 16~20 | Warm and humid year-round, abundant rainfall, distinct seasons, high humidity |
Southwest Sichuan Mountains—subtropical and subhumid zone | 900~1200 | 14~18 | Relatively high temperatures, indistinct seasons, obvious dry-wet season differences, abundant sunshine |
Northwest Sichuan Plateau—cold alpine zone | 500~900 | 4~10 | Significant vertical climate variation, large diurnal temperature range, distinct seasons |
Data Name | Time Scale | Spatial Resolution | Data Information | Data Source |
---|---|---|---|---|
GPM IMERG V06 | Month | 0.1° | Spatial distribution of precipitation | NASA (https://gpm.nasa.gov/) accessed on July 2022 |
SRTM3 DEM | -- | 90 m | Elevation, slope, aspect | National Earth System Science Data Center (http://www.geodata.cn/) accessed on July 2022 |
MOD13A3 | Month | 1 km | NDVI | NASA (https://search.earthdata.nasa.gov/) accessed on July 2022 |
China Near-Surface Average Temperature Dataset | Month | 1 km | Near-surface temperature | National Earth System Science Data Center (http://www.geodata.cn/) accessed on July 2022 |
TRIMS LST [34] | daily | 1 km | Maximum and minimum land surface temperature | National Tibetan Plateau Science Data Center (https://www.tpdc.ac.cn) accessed on July 2022 |
China Near-Surface Average Wind Speed Dataset | Month | 1 km | Near-surface average wind speed | National Earth System Science Data Center (http://www.geodata.cn/) accessed on July 2022 |
China Surface Climate Standard Value Dataset | Month | Station | Observed precipitation and prevailing wind direction | National Meteorological Information Center (http://data.cma.cn/) accessed on July 2022 |
China Monthly reanalysis precipitation [28] | Month | 1 km | Reanalysis Precipitation | China Scientific Data (www.csdata.org) accessed on July 2022 |
Outlier Stations | Observation (mm) | Original GPM (mm) | MGWR Result (mm) | RF Result (mm) |
---|---|---|---|---|
Leshan (January) | 17.8 | 52.6 | 50.1 | 42.7 |
Mianyang (January) | 3.6 | 38.8 | 27.5 | 21.4 |
Doujiangyan (August) | 1080 | 545.7 | 548.9 | 628.9 |
Variable | ELE | SLOP | WWD | NDVI | DSTR | WS |
---|---|---|---|---|---|---|
January | 44 | 5249 | 5249 | 44 | 44 | 44 |
August | 44 | 2161 | 4759 | 46 | 46 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shi, X.; Fang, Y.; Wu, C.; Yi, Z. Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas. Earth 2025, 6, 129. https://doi.org/10.3390/earth6040129
Liu J, Shi X, Fang Y, Wu C, Yi Z. Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas. Earth. 2025; 6(4):129. https://doi.org/10.3390/earth6040129
Chicago/Turabian StyleLiu, Jiao, Xuyang Shi, Yahui Fang, Caiyan Wu, and Zhenyan Yi. 2025. "Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas" Earth 6, no. 4: 129. https://doi.org/10.3390/earth6040129
APA StyleLiu, J., Shi, X., Fang, Y., Wu, C., & Yi, Z. (2025). Comparative Study on the Different Downscaling Methods for GPM Products in Complex Terrain Areas. Earth, 6(4), 129. https://doi.org/10.3390/earth6040129