Analysis of Baseline and Novel Boosting Models for Flood-Prone Prediction and Explainability: Case from the Upper Drâa Basin (Morocco)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used and Methodology Applied
2.2.1. Data
2.2.2. Methodology
Model | Description | Sources |
---|---|---|
AdaBoost | AdaBoost is a popular ensemble learning method that combines multiple weak learners to create a strong classifier. It works by iteratively assigning higher weights to misclassified samples, focusing the model’s attention on difficult instances. While effective for binary classification and simple data distributions, AdaBoost may struggle with complex datasets and can be sensitive to noise. | [24] |
Gradient Boosting Machine (GBM) | GBM is a powerful machine learning algorithm that builds an additive model by sequentially adding weak learners. It minimizes the loss function at each iteration, making it suitable for various tasks, including regression and classification. GBM is robust to noise and can handle non-linear relationships effectively. | [26] |
Extreme Gradient Boosting Machine (XGBM) | XGBoost is a scalable and efficient implementation of GBM that incorporates several optimization techniques. It handles missing values gracefully, supports parallel computation, and employs regularization to prevent overfitting. XGBoost has gained significant popularity due to its high performance and flexibility. | [32] |
LightGBM | LightGBM is a fast and efficient gradient-boosting framework that uses a novel leaf-wise tree growth algorithm. It can handle large datasets and categorical features directly, making it suitable for various machine learning tasks. LightGBM’s speed and accuracy have made it a popular choice for many applications. | [55] |
CatBoost | CatBoost is a gradient-boosting algorithm specifically designed to handle categorical features effectively. It employs a unique algorithm for categorical feature encoding and handles missing values automatically. CatBoost has shown a strong performance in various machine learning tasks and is particularly well-suited to datasets with mixed data types. | [56] |
Histogram-based Gradient Boosting Classification Tree (HistGradientBoosting) | Hist Gradient Boosting is a modern gradient-boosting implementation that leverages histogram-based algorithms for efficient training and prediction. It is inspired by the success of LightGBM and XGBoost and provides a user-friendly interface within the Scikit-learn library. Hist Gradient Boosting is well-suited to large datasets and can handle complex machine learning tasks. | [56] |
RF | Utilizing bootstrap aggregation (bagging) and random feature selection, a meta-estimator known as the random forest refines multiple decision tree classifiers. This approach strengthens the model’s ability to generate accurate predictions. | [5,57] |
2.3. Validation
3. Results
3.1. Multicollinearity Assessment and Relevant Factor Selection
- VIF < 5: Indicates low or acceptable multicollinearity.
- VIF between 5 and 10: Suggests moderate multicollinearity; caution advised.
3.2. FPM Using Various Boosting and RF Algorithms
3.3. Feature Importance Analysis
3.4. Analysis of FPM Using Various Boosting and RF Algorithms Using Performance Metrics
3.5. Evaluation of Classification Models and Prioritization Analysis
3.6. Shapely-Based ML Explainability
4. Discussion
5. Conclusions
- Among the tested models, Hist Gradient Boosting exhibited the highest predictive accuracy, with an overall accuracy of 93.1% and an AUC of 0.833, significantly outperforming traditional ensemble techniques such as random forest and AdaBoost.
- Hist Gradient Boosting achieved the lowest MSE (0.069) and RMSE (0.262), indicating its robustness in handling continuous flood susceptibility predictions.
- The use of boosting algorithms improved classification performance, particularly in precision (1.0 for most models), with a high AUC, OA, and F1 score (0.8 for Hist Gradient Boosting), ensuring reliable flood-prone area identification.
- Compared to traditional classifiers, boosting-based models, particularly CatBoost, LightGBM, and Hist Gradient Boosting, showed improved generalization, reducing false positive rates and enhancing kappa values from 0.613 to 0.7603, indicating a higher agreement with ground truth data.
- These results provide critical insights for flood risk management in data-scarce regions. The integration of sophisticated boosting ML, GIS, and remote-sensing data enables precise mapping, aiding decision-makers in proactive flood mitigation and urban planning.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Hyperparameters |
---|---|
RF | n_estimators: 50–200 criterion: gini, entropy bootstrap: True, False |
AB | n_estimators = 10–500 learning_rate = 0.0001–1.0 |
XGB | n_estimators = 10–500 learning_rate = 0.0001–1.0 max_depth = 3–9 |
CatBoost | iterations: 10–500 learning_rate: 0.0001–1.0 depth: 3–9 |
LightGBM | n_estimators: 10–500 learning_rate: 0.0001–1.0 max_depth: 3–9 min_child_samples: 5–20 |
GBM | n_estimators = 10–500 learning_rate = 0.0001–1.0 max_depth = 3–9 min_samples_split = 2–10 min_samples_leaf = 1–4 |
HGB | max_iter = 10–500 learning_rate = 0.0001–1.0 max_depth = 3–9 min_samples_leaf = 1–4 |
Model | Best hyperparameters |
---|---|
RF | bootstrap: False, criterion: gini, n_estimators: 50 |
AB | learning_rate = 0.001, n_estimators = 100 |
XGB | learning_rate: 0.01, max_depth: 3, n_estimators: 100 |
CatBoost | depth: 9, iterations: 50, learning_rate: 1.0 |
LightGBM | n_estimators: 10, min_child_samples: 10, max_depth: 9, learning_rate: 0.1 |
GBM | learning_rate: 0.01, max_depth: 3, min_samples_leaf: 2, min_samples_split: 2, n_estimators: 500 |
HGB | learning_rate: 0.01, max_depth: 5, max_iter: 500, min_samples_leaf: 4 |
References
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Khaddari, A.; Jari, A.; Chakiri, S.; El Hadi, H.; Labriki, A.; Hajaj, S.; El Harti, A.; Goumghar, L.; Abioui, M. A Comparative analysis of analytical hierarchy process and fuzzy logic modeling in flood susceptibility mapping in the Assaka Watershed, Morocco. J. Ecol. Eng. 2023, 24, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 2021, 37, 5479–5496. [Google Scholar] [CrossRef]
- Cao, Y.; Jia, H.; Xiong, J.; Cheng, W.; Li, K.; Pang, Q.; Yong, Z. Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province, China. ISPRS Int. J. Geo-Inf. 2020, 9, 748. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Mashaly, J.; Ghoneim, E. Flash flood hazard using optical, radar, and stereo-pair derived dem: Eastern Desert, Egypt. Remote Sens. 2018, 10, 1204. [Google Scholar] [CrossRef]
- Zhao, B.; Su, L.; Xu, Q.; Li, W.; Xu, C.; Wang, Y. A review of recent earthquake-induced landslides on the Tibetan Plateau. Earth-Sci. Rev. 2023, 244, 104534. [Google Scholar] [CrossRef]
- Goumghar, L.; Fri, R.; Hajaj, S.; Taia, S.; El Mansouri, B. Integrating geospatial data and analytic hierarchy process for flood-prone zones mapping in the Upper Draa basin, Morocco. Ecol. Eng. Environ. Technol. 2025, 26, 251–268. [Google Scholar] [CrossRef]
- Islam, T.; Zeleke, E.B.; Afroz, M.; Melesse, A.M. A Systematic Review of Urban Flood Susceptibility Mapping: Remote Sensing, Machine Learning, and Other Modeling Approaches. Remote Sens. 2025, 17, 524. [Google Scholar] [CrossRef]
- Aghenda, M.; Labbaci, A.; Hssaisoune, M.; Bouchaou, L. Flood Susceptibility Mapping Using Neural Network Based Models in Morocco: Case of Souss Watershed. Copernicus Meetings 2024. Available online: https://ui.adsabs.harvard.edu/abs/2024EGUGA..26.3447A/abstract (accessed on 29 June 2025).
- Bammou, Y.; Benzougagh, B.; Igmoullan, B.; Ouallali, A.; Kader, S.; Spalevic, V.; Sestras, P.; Billi, P.; Marković, S.B. Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: A case study of Moroccan High Atlas. Nat. Hazards 2024, 120, 7787–7816. [Google Scholar] [CrossRef]
- Jari, A.; Khaddari, A.; Hajaj, S.; Bachaoui, E.M.; Mohammedi, S.; Jellouli, A.; Mosaid, H.; El Harti, A.; Barakat, A. Landslide Susceptibility Mapping Using Multi-Criteria Decision-Making (MCDM), Statistical, and Machine Learning Models in the Aube Department, France. Earth 2023, 4, 698–713. [Google Scholar] [CrossRef]
- Tabarestani, E.S.; Hadian, S.; Pham, Q.B.; Ali, S.A.; Phung, D.T. Flood potential mapping by integrating the bivariate statistics, multi-criteria decision-making, and machine learning techniques. Stoch. Environ. Res. Risk Assess. 2022, 37, 1415–1430. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Dou, J.; Yamagishi, H.; Pourghasemi, H.R.; Yunus, A.P.; Song, X.; Xu, Y.; Zhu, Z. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 2015, 78, 1749–1776. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Nguyen, V.H.; Du, Q.V.V.; Nguyen, C.T.; Dang, D.K.; Truong, Q.H.; Dang, N.B.T.; Tran, Q.T.; Nguyen, Q.-H.; Bui, Q.-T. Application of hybrid model-based machine learning for groundwater potential prediction in the north central of Vietnam. Earth Sci. Inform. 2024, 17, 1–21. [Google Scholar] [CrossRef]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Ar-tificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Chauhan, V.; Gupta, L.; Dixit, J. Landslide susceptibility assessment for Uttarakhand, a Himalayan state of India, using multi-criteria decision making, bivariate, and machine learning models. Geoenvironmental Disasters 2025, 12, 1–25. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef]
- Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2011, 67, 251–264. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Mia, M.U.; Nova, N.A.; Chakrabortty, R.; Khan, M.S.I.; Ghose, B.; Costache, R. Enhancing flood susceptibility mapping in Meghna River basin by introducing ensemble Naive Bayes with stacking algorithms. Geomat. Nat. Hazards Risk 2025, 16, 2464049. [Google Scholar] [CrossRef]
- Talha, S.; Maanan, M.; Atika, H.; Rhinane, H. Prediction of flash flood susceptibility using fuzzy analytical hierarchy process (fahp) algorithms and gis: A study case of guelmim region in southwestern of Morocco. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W19, 407–414. [Google Scholar] [CrossRef]
- Negese, A.; Worku, D.; Shitaye, A.; Getnet, H. Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Appl. Water Sci. 2022, 12, 1–21. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Breiman, L. Arcing Classifiers (with discussion and a rejoinder by the author). Ann. Stat. 1998, 26, 801–849. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Rätsch, G.; Onoda, T.; Müller, K.-R. Soft margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
- Mason, L.; Bartlett, P.L.; Baxter, J. Improved generalization through explicit optimization of margins. Mach. Learn. 2000, 38, 243–255. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Merz, B.; Hall, J.; Disse, M.; Schumann, A. Fluvial flood risk management in a changing world. Nat. Hazards Earth Syst. Sci. 2010, 10, 509–527. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef]
- Mathur, P.; Mathur, M. Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: A global appraisal. Arab. J. Geosci. 2023, 16, 1–28. [Google Scholar] [CrossRef]
- Bammou, M.; Bouhlali, E.D.T.; Sellam, K.; Derouich, M.; El-Rhaffari, L.; Ibijbijen, J.; Nassiri, L. Chemical profile and antimicrobial properties of liquid and vapor phases of the essential oil of Cladanthus eriolepis: An endemic asteraceae growing in the Moroccan oases. J. Essent. Oil Bear. Plants 2020, 23, 1042–1053. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; Massari, C.; Brocca, L.; Simonneaux, V.; Gascoin, S.; Saidi, M.E.M. Challenges in flood modeling over data-scarce regions: How to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco. Nat. Hazards Earth Syst. Sci. 2020, 20, 2591–2607. [Google Scholar] [CrossRef]
- Hitouri, S.; Mohajane, M.; Lahsaini, M.; Ali, S.A.; Setargie, T.A.; Tripathi, G.; D’antonio, P.; Singh, S.K.; Varasano, A. Flood susceptibility mapping using SAR data and machine learning algorithms in a small watershed in northwestern Morocco. Remote Sens. 2024, 16, 858. [Google Scholar] [CrossRef]
- Fels, A.E.A.E.; Alaa, N.; Bachnou, A.; Rachidi, S. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco). J. Afr. Earth Sci. 2018, 141, 94–106. [Google Scholar] [CrossRef]
- Fico, J. Watering the Desert, Draining the Oasis: Navigating Drought, Development, and Irrigation Politics in the Draa Valley, Morocco; Syracuse University: New York, NY, USA, 2022; p. 147. [Google Scholar]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Carabajal, C.; ASTER Global Digital Elevation Model Version 2-Summary of Validation Results. Available online: https://lpdaac.usgs.gov/documents/220/Summary_GDEM2_validation_report_final.pdf (accessed on 29 June 2025).
- Bense, V.; Gleeson, T.; Loveless, S.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth-Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Ghosh, A.; Dey, P.; Ghosh, T. Integration of RS-GIS with frequency ratio, fuzzy logic, logistic regression and decision tree models for flood susceptibility prediction in lower gangetic plain: A study on malda district of West Bengal, India. J. Indian Soc. Remote Sens. 2022, 50, 1725–1745. [Google Scholar] [CrossRef]
- Choubert, G. Histoire géologique du domaine de l’Anti-Atlas. Notes Mém. Serv. Géol. Maroc. 1952, 100, 77–172. [Google Scholar]
- Ferreira, A.; Figueiredo, M.A.; Figueiredo, T. Boosting algorithms: A review of methods, theory, and applications. In Ensemble Machine Learning. Methods Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Azour, F.; Boukerche, A. An efficient transfer and ensemble learning based computer aided breast abnormality diagnosis system. IEEE Access 2022, 11, 21199–21209. [Google Scholar] [CrossRef]
- Chen, T.; Wei, W.; Jiao, J.; Zhang, Z.; Li, J. Machine learning-based identification for the main influencing factors of alluvial fan development in the Lhasa River Basin, Qinghai-Tibet Plateau. J. Geogr. Sci. 2022, 32, 1557–1580. [Google Scholar] [CrossRef]
- Roder, L.R.; Guerrini, I.A.; Sivisaca, D.C.L.; Puglla, C.A.Y.; de Moraes, F.G.; da Silva, J.P.; Fonseca, R.C.B.; Umbelino, M.T.; James, J.N.; Capra, G.F.; et al. Atlantic rainforest natural regeneration in fragmented formations affected by increasing human disturbance. J. Environ. Manag. 2022, 325, 116521. [Google Scholar] [CrossRef] [PubMed]
- Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Ashrafi, S.; Kerachian, R.; Pourmoghim, P.; Behboudian, M.; Motlaghzadeh, K. Evaluating and improving the sustainability of ecosystem services in river basins under climate change. Sci. Total Environ. 2022, 806, 150702. [Google Scholar] [CrossRef]
- Undurraga, R.; Vicuña, S.; Melo, O. Compensating Water Service Interruptions to Implement a Safe-to-Fail Approach to Climate Change Adaptation in Urban Water Supply. Water 2020, 12, 1540. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–458. [Google Scholar] [CrossRef]
- Rachdane, M.; El Khalki, E.M.; Saidi, M.E.; Nehmadou, M.; Ahbari, A.; Tramblay, Y. Comparison of High-Resolution Satellite Precipitation Products in Sub-Saharan Morocco. Water 2022, 14, 3336. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Mosavi, A.; Golshan, M.; Janizadeh, S.; Choubin, B.; Melesse, A.M.; Dineva, A.A. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: A priority as-sessment of sub-basins. Geocarto Int. 2022, 37, 2541–2560. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, L.; Walshaw, D. Improved estimation for temporally clustered extremes. Environmetrics Off. J. Int. Environmetrics Soc. 2007, 18, 173–188. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; McGraw-Hill: Columbus, OH, USA, 2005; ISBN 0-07-238688-6. [Google Scholar]
- Murtagh, F.; Heck, A. Multivariate data analysis. In Multivariate Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; p. 785. [Google Scholar]
- Zhu, E.; Wang, Y.; Yuan, X. Changes of terrestrial water storage during 1981–2020 over China based on dynamic-machine learning model. J. Hydrol. 2023, 621, 129576. [Google Scholar] [CrossRef]
- Zheng, W.; Cao, Y.; Fan, W.; Liang, X.; Yuan, S.; Gao, W.; Zhang, J. Formation processes and mechanisms of a fault-controlled colluvial landslide in the Qinling-Daba Mountains, China. Sci. Rep. 2024, 14, 1–18. [Google Scholar] [CrossRef]
- Kratzert, F.; Gauch, M.; Klotz, D.; Nearing, G. HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin. Hydrol. Earth Syst. Sci. 2024, 28, 4187–4201. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, H.; Li, C.; Zhang, Q. Exploring the driving factors of urban flood at the catchment Scale: A case study of multitype megacities in China. Ecol. Indic. 2024, 166, 112513. [Google Scholar] [CrossRef]
- Meliho, M.; Khattabi, A.; Driss, Z.; Orlando, C.A. Spatial prediction of flood-susceptible zones in the Ourika watershed of Morocco using machine learning algorithms. Appl. Comput. Inform. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Saravanan, S.; Abijith, D.; Reddy, N.M.; Kss, P.; Janardhanam, N.; Sathiyamurthi, S.; Sivakumar, V. Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India. Urban Clim. 2023, 49, 101503. [Google Scholar] [CrossRef]
- Rachdane, M.; Saidi, M.E.; El Khalki, E.M.; Hadri, A.; Boughdadi, S.; Nehmadou, M.; Ahbari, A.; Tramblay, Y. Unraveling flood dynamics at sub-daily time scales in semi-arid to arid basins in south Morocco. Nat. Hazards 2024, 121, 5413–5433. [Google Scholar] [CrossRef]
Model | Description | Sources |
---|---|---|
Lithology | The region of the Upper Drâa exhibits a diverse lithology, including Quaternary deposits (conglomerates, sand dunes, alluvium), sedimentary rocks (sandstones, schists, quartzites, dolomites, marls, limestones), volcanic rocks, and metamorphic rocks (gneisses, micaschists, migmatites). | Geological map of Upper Drâa (scale 1:25,000). |
Fault density | Fault density in the Upper Drâa Basin plays a significant role in shaping the landscape and influencing flood dynamics, so we incorporate fault density data into flood susceptibility models. | Geological map of Upper Drâa (scale 1:25,000). |
Elevation | Lower-altitude flat areas are more prone to flooding due to the limited drainage capacity. A 30 m resolution ASTER DEM was processed, georeferenced, and validated to delineate the Upper Drâa watershed, which ranges from 1000 m to 4100 m in elevation. | Derived from DTM (Aster- DEM) https://earthexplorer.usgs.gov (accessed on 22 January 2025) |
Slope | Slope influences surface water behavior, affecting runoff and infiltration. Low-gradient areas enhance infiltration but may increase flood risk, while steep slopes promote rapid runoff. In the Upper Drâa watershed, slope values range from 0 to 49 degrees, shaping hydrological processes. | |
TWI | TWI = In(As/tanβ), where As is the upstream drainage area and β is the slope degree. | |
Plan curvature | Measures the horizontal curvature of a surface, indicating flow convergence (negative values) or divergence (positive values). Derived from a DEM, with processing in ArcGIS. | |
Aspect | Represents the compass direction a slope faces, measured in degrees from 0° (North) to 360°. It influences solar exposure, wind patterns, and hydrological processes, affecting vegetation distribution, soil moisture, and erosion. This factor is processed using ArcGIS. | |
Profile curvature | Measures the curvature of a surface along the slope direction. It influences the acceleration or deceleration of flow, affecting erosion and sediment transport. Positive values indicate convex slopes (flow deceleration), obtained by processing in ArcGIS. | |
Hydrographical network | Drainage density, the total stream length per basin area, reflects hydrologic response and landscape dissection. Higher values (up to 2.1 No/km2) indicate densely packed streams, influencing runoff and erosion, while lower values suggest slower drainage. | |
Precipitation | The map shows the spatial distribution of average annual rainfall in the Upper Drâa watershed, with rainfall values ranging from 101.9 to 258.4 mm. Higher rainfall is concentrated in the eastern and western regions, while amounts decrease toward the southern and western borders, with darker blue areas representing higher rainfall and lighter hues indicating lower rainfall. | Drâa Oued Noun Hydraulic Basin Agency DONHBA |
Flood sites | Data on flood-affected areas were collected from the Hydraulic Basin Agency, supplemented by field diagnostics to identify zones impacted by flooding and those that remained unaffected. This combined approach enables precise mapping of at-risk areas and a deeper understanding of the factors contributing to flood events. | DONHBA |
Feature | VIF | Tolerance |
---|---|---|
Aspect | 1.078821 | 0.9269 |
Density_rivers | 2.431397 | 0.4113 |
Fault_density | 1.540298 | 0.6492 |
Elevation | 1.153965 | 0.8666 |
Lithology | 1.669058 | 0.5992 |
Plan_curv | 1.379585 | 0.7249 |
Prof_curv | 1.419947 | 0.7042 |
Rainfall | 1.637752 | 0.6106 |
Slope | 1.55037 | 0.645 |
TWI | 1.951114 | 0.5125 |
Performance via Testing | RF | AdaBoost | XGB | CatBoost | LightGBM | GBM | Hist |
---|---|---|---|---|---|---|---|
MSE | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.068 |
RMSE | 0.321 | 0.321 | 0.321 | 0.321 | 0.321 | 0.321 | 0.262 |
Precision | 1.000 | 1.000 | 1.000 | 0.800 | 0.800 | 1.000 | 1.000 |
Recall | 0.500 | 0.500 | 0.500 | 0.666 | 0.666 | 0.500 | 0.666 |
F1 | 0.666 | 0.666 | 0.666 | 0.727 | 0.727 | 0.666 | 0.800 |
Specificity | 1.000 | 1.000 | 1.000 | 0.956 | 0.956 | 1.000 | 1.000 |
Kappa | 0.613 | 0.613 | 0.613 | 0.664 | 0.664 | 0.613 | 0.760 |
MCC | 0.665 | 0.665 | 0.665 | 0.668 | 0.668 | 0.662 | 0.783 |
Sensitivity | 0.500 | 0.500 | 0.500 | 0.666 | 0.666 | 0.500 | 0.666 |
Precision | 1.000 | 1.000 | 1.000 | 0.800 | 0.800 | 1.000 | 1.000 |
FFR | 0.000 | 0.000 | 0.000 | 0.043 | 0.043 | 0.000 | 0.000 |
OA | 0.896 | 0.896 | 0.896 | 0.896 | 0.896 | 0.896 | 0.931 |
AUC | 0.750 | 0.750 | 0.750 | 0.811 | 0.811 | 0.750 | 0.833 |
Performance via Training | RF | AdaBoost | XGB | CatBoost | LightGBM | GBM | Hist |
MSE | 0.000 | 0.035 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 |
RMSE | 0.000 | 0.188 | 0.218 | 0.000 | 0.000 | 0.000 | 0.000 |
Precision | 1.000 | 0.937 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Recall | 1.000 | 0.882 | 0.764 | 1.000 | 1.000 | 1.000 | 1.000 |
F1 | 1.000 | 0.909 | 0.866 | 1.000 | 1.000 | 1.000 | 1.000 |
Specificity | 1.000 | 0.985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Kappa | 1.000 | 0.888 | 0.838 | 1.000 | 1.000 | 1.000 | 1.000 |
MCC | 1.000 | 0.887 | 0.849 | 1.000 | 1.000 | 1.000 | 1.000 |
Sensitivity | 1.000 | 0.882 | 0.764 | 1.000 | 1.000 | 1.000 | 1.000 |
Precision | 1.000 | 0.937 | 1.000. | 1.000 | 1.000 | 1.000 | 1.000 |
FFR | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
OA | 1.000 | 0.964 | 0.952 | 1.000 | 1.000 | 1.000 | 1.000 |
AUC | 1.000 | 0.933 | 0.882 | 1.000 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goumghar, L.; Hajaj, S.; Haida, S.; Kili, M.; Mridekh, A.; Khandouch, Y.; Jari, A.; El Harti, A.; El Mansouri, B. Analysis of Baseline and Novel Boosting Models for Flood-Prone Prediction and Explainability: Case from the Upper Drâa Basin (Morocco). Earth 2025, 6, 69. https://doi.org/10.3390/earth6030069
Goumghar L, Hajaj S, Haida S, Kili M, Mridekh A, Khandouch Y, Jari A, El Harti A, El Mansouri B. Analysis of Baseline and Novel Boosting Models for Flood-Prone Prediction and Explainability: Case from the Upper Drâa Basin (Morocco). Earth. 2025; 6(3):69. https://doi.org/10.3390/earth6030069
Chicago/Turabian StyleGoumghar, Lahcen, Soufiane Hajaj, Souad Haida, Malika Kili, Abdelaziz Mridekh, Younes Khandouch, Abdessamad Jari, Abderrazak El Harti, and Bouabid El Mansouri. 2025. "Analysis of Baseline and Novel Boosting Models for Flood-Prone Prediction and Explainability: Case from the Upper Drâa Basin (Morocco)" Earth 6, no. 3: 69. https://doi.org/10.3390/earth6030069
APA StyleGoumghar, L., Hajaj, S., Haida, S., Kili, M., Mridekh, A., Khandouch, Y., Jari, A., El Harti, A., & El Mansouri, B. (2025). Analysis of Baseline and Novel Boosting Models for Flood-Prone Prediction and Explainability: Case from the Upper Drâa Basin (Morocco). Earth, 6(3), 69. https://doi.org/10.3390/earth6030069