Review: Implications of Air Pollution on Trees Located in Urban Areas
Abstract
:1. Introduction
2. Atmospheric Pollution
Pollution Sources and Types of Pollutants
3. Effects of Air Pollution on Trees
4. Stress-Tolerant Tree Species
Air Pollution Tolerance Index and Anticipated Performance Index (APTI and API)
5. Regulation and World Problems
6. Conclusions
7. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Dadkhah-Agdash, H.; Rasouli, M.; Rasouli, K.; Salimi, A. Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Sci. Rep. 2022, 12, 15398. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. Pollution Response Score of Tree Species about Ambient Air Quality in an Urban Area. Bull Environ Contam. Toxicol. 2016, 96, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Qu, X.; Huang, B.; Li, Z.; Sun, J.; Wei, X.; Yang, X. Urban trees in university campus: Structure, function, and ecological values. Environ. Sci. Pollut. Res. 2021, 28, 45183–45198. [Google Scholar] [CrossRef]
- Schulze, F.; Gao, X.; Virzonis, D.; Damiati, S.; Schneider, M.R.; Kodzius, R. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes 2017, 8, 244. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban Population Exposure to Air Pollution in Europe over the Last Decades. Environ. Sci. Eur. 2021, 33, 28. [Google Scholar] [CrossRef] [PubMed]
- European Commissions. The von der Leyen Commission; European Commissions: Brussels, Belgium, 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Semarnat. Atmosfera. In Informe de la Situación del Medio Ambiente en México; Secretariat of Environment and Natural Resources: Mexico City, Mexico, 2018; pp. 281–378. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe18/tema/pdf/Informe2018GMX_web.pdf (accessed on 8 May 2025).
- United Nations Environment Programme (UNEP). Regulating Air Quality: The First Global Assessment of Air Pollution Legislation, 1st ed.; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Xing, Y.; Brimblecombe, P.; Wang, S.; Zhang, H. Tree distribution, morphology and modelled air pollution in urban parks of Hong Kong. J. Environ. Manag. 2019, 248, 109304. [Google Scholar] [CrossRef] [PubMed]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; Andrade, M.d.F.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; et al. The role of air pollution and climate on the growth of urban trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Npj Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef]
- Sen, A.; Khan, I.; Kundu, D.; Das, K.; Datta, J.K. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species. Environ. Monit. Assess. 2017, 189, 262. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 2020, 722, 137622. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.R.; Lovell, R.; Guell, C.; Taylor, T.; Fullam, J.; Garside, R.; Zandersen, M.; Wheeler, B.W. Street trees and mental health: Developing systems thinking-informed hypotheses using causal loop diagraming. Ecol. Soc. 2023, 28, 1. [Google Scholar] [CrossRef]
- Gheorghe, I.F.; Ion, B. The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution. In The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, 1st ed.; Khallaf, M., Ed.; Princes Gate Court: London, UK, 2011; Volume 12, pp. 241–280. [Google Scholar] [CrossRef]
- Strong, K.; Simpson, W.R.; Bognar, K.; Lindenmaier, R.; Roche, S. Trace Gases in the Arctic Atmosphere. In Springer Polar Sciences; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Kanakidou, M.; Myriokefalitakis, S.; Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 2018, 13, 063004. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Zhou, M.; Zhang, H.; Zhang, X.; Yue, Y.; Yao, X.; Wang, J.; Xi, C.; Zheng, P.; et al. PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. Environ. Pollut. 2022, 295, 118715. [Google Scholar] [CrossRef] [PubMed]
- Organización Panamericana de la Salud. (s.f.). Calidad del Aire Ambiente. OPS. Available online: https://www.paho.org/es/temas/calidad-aire/calidad-aire-ambiente (accessed on 28 February 2025).
- Anwar, A.; Ullah, I.; Younis, M.; Flahault, A. Impact of Air Pollution (PM2.5) on Child Mortality: Evidence from Sixteen Asian Countries. Int. J. Environ. Res. Public Health 2021, 18, 6375. [Google Scholar] [CrossRef]
- Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air Quality in Africa: Public Health Implications. Annu. Rev. Public Health 2020, 42, 193–210. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. (n.d.). National Ambient Air Quality Standards (NAAQS) Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 28 February 2025).
- Ren, L.; Yang, W.; Bai, Z. Characteristics of Major Air Pollutants in China. In Ambient Air Pollution and Health Impact in China; Dong, G.H., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1017, pp. 13–28. [Google Scholar] [CrossRef]
- Comisión Federal Para la Protección Contra Riesgos Sanitarios. (s.f.). Normas Oficiales Mexicanas (NOM) de Calidad del Aire Ambiente. Gobierno de México. Available online: https://www.gob.mx/cofepris/acciones-y-programas/4-normas-oficiales-mexicanas-nom-de-calidad-del-aire-ambiente (accessed on 28 February 2025).
- Central Pollution Control Board. (s.f.). Annual Report 2022–2023. Available online: https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTY2OV8xNzI3NDE0NTc1X21lZGlhcGhvdG8yOTAyNy5wZGY= (accessed on 28 February 2025).
- Ito, A.; Wakamatsu, S.; Morikawa, T.; Kobayashi, S. 30 Years of Air Quality Trends in Japan. Atmosphere 2021, 12, 1072. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and airway disease. Clin. Exp. Allergy 2011, 41, 1059–1071. [Google Scholar] [CrossRef]
- Pinto, D.M.; Blande, J.D.; Souza, S.R.; Nerg, A.M.; Holopainen, J.K. Plant Volatile Organic Compounds (VOCs) in Ozone (O3) Polluted Atmospheres: The Ecological Effects. J. Chem. Ecol. 2010, 36, 22–34. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Young-Castro, F.; Caballero-Gallardo, K. Contaminación por mercurio en aire del distrito minero de San Martín de Loba en el departamento de Bolívar, Colombia. Rev. Int. De Contam. Ambient. 2014, 30, 7–13. [Google Scholar]
- Mwaanga, P.; Silondwa, M.; Kasali, G.; Banda, P.M. Preliminary review of mine air pollution in Zambia. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef] [PubMed]
- Austruy, A.; Yung, L.; Ambrosi, J.P.; Girardclos, O.; Keller, C.; Angeletti, B.; Dron, J.; Chamaret, P.; Chalot, M. Evaluation of historical atmospheric pollution in an industrial area by dendrochemical approaches. Chemosphere 2019, 220, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Rui, X.; Li, Y.; Li, Y.; Wang, H.; Zuo, J.; Tong, Y. Sources of Atmospheric Pollution: A Bibliometric Analysis. Scientometrics 2017, 112, 1025–1045. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.J.; Yoon, J.H.; Bae, E.J.; Jeong, B.R.; Yong, S.H.; Choi, M.S. Particulate Matter Removal Ability of Ten Evergreen Trees Planted in Korea Urban Greening. Forests 2021, 12, 438. [Google Scholar] [CrossRef]
- INEGI. Censo de Población y Vivienda 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/default.html (accessed on 20 November 2022).
- Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J.C.; Alvarez-ramirez, J. Statistical persistence of air pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A 2015, 427, 202–217. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; Alharbi, B.H.; Al-Shamsi, M.A.; Al-Namazi, A.A.; Alharbi, S.F.; Alotaibi, F.S. Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environ. Sci. Pollut. Res. 2020, 27, 29156–29170. [Google Scholar] [CrossRef]
- Calderón-Ezquerro, M.C.; Serrano-Silva, N.; Brunner-Mendoza, C. Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia 2020, 36, 493–505. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.; Ryu, H.S.; Moon, J.; Khant, N.A.; Yu, C.; Yu, J.H. Review on invasion of microplastic in our ecosystem and implications. Sci. Prog. 2022, 105, 368504221140766. [Google Scholar] [CrossRef]
- Austen, K.; MacLean, J.; Balanzategui, D.; Hölker, F. Microplastic inclusion in birch tree roots. Sci. Total Environ. 2022, 808, 152085. [Google Scholar] [CrossRef]
- Kaur, M.; Nagpal, A.K. Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ. Sci. Pollut. Res. 2017, 24, 18881–18895. [Google Scholar] [CrossRef]
- Pietras-Couffignal, K.; Robakowski, P. The impact of air pollution on growth features and the health of trees in berlin. Dendrobiology 2019, 82, 52–65. [Google Scholar] [CrossRef]
- Brahmachari, S.; Kundu, S. SO2 Stress: Its effect on Plants, Plant Defence Responses and Strategies for Developing Enduring Resistance. IARJSET 2017, 4, 303–309. [Google Scholar] [CrossRef]
- Molnár, V.É.; Tőzsér, D.; Szabó, S.; Tóthmérész, B.; Simon, E. Use of Leaves as Bioindicator to Assess Air Pollution Based on Composite Proxy Measure (APTI), Dust Amount and Elemental Concentration of Metals. Plants 2020, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, A.A.; Barakat, N.A.; Youssef, N.A.; Samir, N.A. Bioaccumulation of heavy metals air pollutants by urban trees. Int. J. Phytoremediat. 2020, 22, 210–222. [Google Scholar] [CrossRef]
- Jenkins, H.S. Air pollution and climate drive annual growth in ponderosa pine trees in southern california. Climate 2021, 9, 82. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Han, Y.; Sun, N.; Sun, W.; Li, J.; Liu, C.; Yin, S. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef]
- Hoshika, Y.; Carriero, G.; Feng, Z.; Zhang, Y.; Paoletti, E. Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. Sci. Total Environ. 2014, 481, 453–458. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Lim, Y.J.; Kim, H.; Kim, K.N.; Je, S.M.; Park, C.R.; Woo, S.Y. Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake. Sustainability 2020, 12, 3067. [Google Scholar] [CrossRef]
- Hoshika, Y.; Katata, G.; Deushi, M.; Watanabe, M.; Koike, T.; Paoletti, E. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci. Rep. 2015, 5, 9871. [Google Scholar] [CrossRef]
- Khosropour, E.; Attarod, P.; Shirvany, A.; Pypker, T.G.; Bayramzadeh, V.; Hakimi, L.; Moeinaddini, M. Response of Platanus orientalis leaves to urban pollution by heavy metals. J. For. Res. 2019, 30, 1437–1445. [Google Scholar] [CrossRef]
- Kiyomizu, T.; Yamagishi, S.; Kume, A.; Hanba, Y.T. Contrasting photosynthetic responses to ambient air pollution between the urban shrub Rhododendron × pulchrum and urban tall tree Ginkgo biloba in Kyoto city: Stomatal and leaf mesophyll morpho-anatomies are key traits. Trees-Struct. Funct. 2019, 33, 63–77. [Google Scholar] [CrossRef]
- Zhang, J.; Ghirardo, A.; Gori, A.; Albert, A.; Buegger, F.; Pace, R.; Georgii, E.; Grote, R.; Schnitzler, J.P.; Durner, J.; et al. Improving Air Quality by Nitric Oxide Consumption of Climate-Resilient Trees Suitable for Urban Greening. Front. Plant. Sci. 2020, 11, 549913. [Google Scholar] [CrossRef] [PubMed]
- Bandara, W.A.R.T.W.; Dissanayake, C.T.M. Most tolerant roadside tree species for urban settings in humid tropics based on Air Pollution Tolerance Index. Urban Clim. 2021, 37, 100848. [Google Scholar] [CrossRef]
- Sharma, G.; Rahul; Guleria, R.; Mathur, V. Differences in plant metabolites and microbes associated with Azadirachta indica with variation in air pollution. Environ. Pollut. 2020, 257, 113595. [Google Scholar] [CrossRef]
- Li, P.; Ran, K.; Gao, F. The Interactive Effects of Nitrogen Addition and Ozone Pollution on Cathay Poplar-Associated Phyllosphere Bacterial Communities. Forests 2023, 14, 452. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.M.; Rosas, U.; Calva-Vásquez, G.; Sandoval-Zapotitla, E. Does acid rain alter the leaf anatomy and photosynthetic pigments in urban trees? Plants 2020, 9, 862. [Google Scholar] [CrossRef]
- Hauer, R.J.; Hanou, I.S.; Sivyer, D. Planning for Active Management of Future Invasive Pests Affecting Urban Forests: The Ecological and Economic Effects of Varying Dutch Elm Disease Management Practices for Street Trees in Milwaukee, WI, USA. Urban Ecosyst. 2020, 23, 1005–1022. [Google Scholar] [CrossRef]
- Meshkova, V.; Kuznetsova, O.; Borysenko, O.; Korsovetskyi, V.; Pyvovar, T. Biotic Factors Affecting Elm Health in Ukraine. Forests 2024, 15, 2209. [Google Scholar] [CrossRef]
- Singh, A.K.; Behera, S.; Choudhary, J.K.; Shukla, S.K. Evaluating the role of tree flora in air pollution mitigation and heavy metals accumulation near brick kilns. Atmos. Pollut. Res. 2025, 16, 102436. [Google Scholar] [CrossRef]
- Sklyarenko, A.V.; Bessonova, V.P. Accumulation of sulfur and glutathione in leaves of woody plants growing under the conditions of outdoor air pollution by sulfur dioxide. Biosyst. Divers. 2018, 26, 334–338. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.; Kim, H.; Park, S.; Lim, Y.; Kim, J.E.; Baek, S.G.; Seo, S.M.; Kim, K.N.; Woo, S.Y. The removal efficiencies of several temperate tree species at adsorbing airborne particulate matter in urban forests and roadsides. Forests 2019, 10, 960. [Google Scholar] [CrossRef]
- Banerjee, S.; Palit, D.; Banerjee, A. Variation of tree biochemical and physiological characters under different air pollution stresses. Environ. Sci. Pollut. Res. 2021, 28, 17960–17980. [Google Scholar] [CrossRef] [PubMed]
- Lohe, R.N.; Tyagi, B.; Singh, V.; Tyagi, P.; Khanna, D.R.; Bhutiani, R. A comparative study for air pollution tolerance index of some terrestrial plant species. Glob. J. Environ. Sci. Manag. 2015, 1, 315–324. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pandey, M.; Mishra, A.; Tiwary, S.M.; Tripathi, B.D. Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban For. Urban Green. 2015, 14, 866–871. [Google Scholar] [CrossRef]
- Yousafzai, A.; Durani, A.; Durrani, H. Assessment of air pollution tolerance index and anticipated performance index of common roadssides trees. Int. J. Multidiscip. Res. Dev. 2018, 5, 45–54. [Google Scholar]
- Jabeen, R. Air Pollution Tolerance Index (APTI) of Some Plants Growing on the Roads of Abha, Saudi Arabia. BBRC 2019, 12, 631–636. [Google Scholar] [CrossRef]
- Correa-Ochoa, M.; Mejia-Sepulveda, J.; Saldarriaga-Molina, J.; Castro-Jiménez, C.; Aguiar-Gil, D. Evaluation of air pollution tolerance index and anticipated performance index of six plant species, in an urban tropical valley: Medellin, Colombia. Environ. Sci. Pollut. Res. 2022, 29, 7952–7971. [Google Scholar] [CrossRef]
- Jamal, R.; Narayan, S.; Dubey, R.; Kannaujia, R.; Rai, R.; Behera, S.K.; Shirke, P.A.; Pandey, V.; Barik, S.K. Response of Tropical Trees to Elevated Ozone: A Free Air Ozone Enrichment Study. Environ. Monit. Assess. 2023, 195, 238. [Google Scholar] [CrossRef]
- Datta, S.; Sharma, A.; Parkar, V.; Hakkim, H.; Kumar, A.; Chauhan, A.; Tomar, S.S.; Sinha, B. A New Index to Assess the Air Quality Impact of Urban Tree Plantation. Urban Clim. 2021, 40, 100995. [Google Scholar] [CrossRef]
- Martin, R.V.; Brauer, M.; van Donkelaar, A.; Shaddick, G.; Narain, U.; Dey, S. No one knows which city has the highest concentration of fine particulate matter. Atmos. Environ. X 2019, 3, 100040. [Google Scholar] [CrossRef]
- USAID. LMIC Urban Air Pollution Solutions; Technical Document; United States Agency for International Development: Washington, DC, USA, 2019; pp. 1–48.
- United Nations Climate Change. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 20 November 2022).
- The Sustainable Development Agenda. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 20 November 2022).
- Sánchez-Salinas, E.; Ortiz-Hernández, L.O.; Castrejón-Godínez, M.L.; Solis, A.J.R. La contaminación atmosférica urbana:gestión y políticas públicas de la calidad del aire. In Contaminación Urbana del Aire: Aspectos Fisicoquímicos, Microbiológicos y Sociales, 1st ed.; Universidad Autónoma del Estado de Morelos: Cuernavaca, Mexico, 2014; pp. 11–42. ISBN 978-607-8332-59-5. [Google Scholar]
- World Health Organization. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollution. Available online: https://www.who.int/es/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 22 November 2022).
- Stockholm Environment Institute and Climate and Clean Air Coalition. A Practical Guide for Business Air Pollutant Emission Assessment. 2022. Available online: https://www.ccacoalition.org/en/resources/practical-guide-business-air-pollutant-emission-assessment (accessed on 8 May 2025).
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Aldunce, P.; Ali, E.; Ara-Begum, R.; BednarFriedl, B.; et al. Technical Summary. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 37–118. [Google Scholar]
Air Quality Standard | PM10 | PM2.5 | Ozone (O3) | Nitrogen Dioxide (NO2) | Sulfur Dioxide (SO2) | Carbon Monoxide (CO) | References |
---|---|---|---|---|---|---|---|
WHO | Annual mean (20 µg m−3) Number of exceedances of 24 h mean (50 µg m−3) | Annual mean (10 µg m−3) Number of exceedances of 24 h mean (25 µg m−3) | Number of exceedances of maximum daily 8 h mean (100 µg m−3) | Annual mean (40 µg m−3) Number of exceedances of 1 h mean (200 µg m−3) | Number of exceedances of 24 h mean (20 µg m−3) | Maximum daily 8 h (10,000 µg m−3) | [6] |
Europe | Annual mean (40 µg m−3) | Annual mean (25 µg m−3) | Number of exceedances of maximum daily 8 h mean (120 µg m−3) | Annual mean (40 µg m−3) Number of exceedances of 1 h mean (200 µg m−3) | Number of exceedances of the 24 h mean (125 µg m−3) | Maximum daily 8 h (10,000 µg m−3) | [6] |
Number of exceedances of 24 h mean (50 µg m−3) | |||||||
EU | Number of exceedances of the 24 h mean (150 µg m−3) | Annual mean (9 µg m−3) Number of exceedances of 24 h mean (35 µg m−3) | Number of exceedances of maximum daily 8 h mean (0.070 ppm) | Annual mean (53 ppm) Number of exceedances of 1 h mean (100 ppb) | Number of exceedances of 1 h mean (75 ppb) | Maximum daily 8 h (9 ppm) | [23] |
China | Annual mean (40 µg m−3) Number of exceedances of 24 h mean (50 µg m−3) | Annual mean (15 µg m−3) Number of exceedances of 24 h mean (35 µg m−3) | Number of exceedances of maximum daily 8 h mean (100 µg m−3) | Annual mean (40 µg m−3) Number of exceedances of the 24 h mean (80 µg m−3) Number of exceedances of 1 h mean (200 µg m−3) | Annual mean (20 µg m−3) Number of exceedances of 24 h mean (50 µg m−3) Number of exceedances of 1 h mean (150 µg m−3) | Maximum daily 8 h (4000 µg m−3) | [24] |
Mexico | Annual mean (36 µg m−3) Number of exceedances of the 24 h mean (10 µg m−3) | Annual mean (10 µg m−3)| Number of exceedances of the 24 h mean (41 µg m−3) | Number of exceedances of maximum daily 8 h mean (0.065 ppm) | Annual mean (0.021 ppm) Number of exceedances of 1 h mean (0.0.106 ppm) Number of exceedances of 24 h mean (0.040 ppm) | Number of exceedances of 1 h mean (0.075 ppm) Number of exceedances of 24 h mean (0.040 ppm) | Maximum daily 8 h (9 ppm) | [25] |
India | Number of exceedances of the 24 h mean (150 µg m−3) | Annual mean (9 µg m−3) Number of exceedances of 24 h mean (35 µg m−3) | Number of exceedances of maximum daily 8 h mean (0.070 ppm) | Annual mean (53 ppm) Number of exceedances of 1 h mean (100 ppb) | Number of exceedances of 1 h mean (75 ppb) | Maximum daily 8 h (9 ppm) | [26] |
Japan | Number of exceedances of 24 h mean (100 µg m−3) | Annual mean (15 µg m−3) Number of exceedances of 24 h mean (35 µg m−3) | Number of exceedances of 1 h mean (60 ppb) | Number of exceedances of 24 h mean (60 ppb) | - | - | [27] |
Pollutant | Type | Source |
---|---|---|
Particulate matter (PM10, PM2.5) | Suspended particles | Burning fossil fuels, road dust, fires, and land burning. |
Sulfur dioxide (SO2) | Gas | Coal and oil power plants, oil refineries, metallurgical industry, and volcanic eruptions. |
Nitrogen dioxide (NO2) | Gas | Motor vehicles, industries, and power generation. |
Carbon monoxide (CO) | Gas | Internal combustion engines, forest fires, and industrial processes. |
Tropospheric ozone (O3) | Secondary gas | Chemical reactions between NOx and VOCs in the presence of sunlight. |
Methane (CH4) | Greenhouse gas | Agriculture, waste decomposition, and oil and gas extraction. |
Volatile organic compounds (VOCs) | Gases | Emissions from solvents, paints, gasoline, and diesel combustion. |
As Cd, Cr, Co, Cu, Hg, Ni, Pb, V, Zn, and Fe | Heavy metal | Metallurgical industries, the combustion of leaded gasoline (in some countries), electronic waste, and the mining industry. |
Species | APTI Value | Classification | References |
---|---|---|---|
Morus alba | 14.08 | Sensitive | [3] |
Ailanthus altissima | 11.15 | Sensitive | |
Salix babylonica | 11.08 | Sensitive | |
Swietenia mahagoni | 17–29 | Intermediate | [13] |
Cassia fistula | 17–29 | Intermediate | |
Ficus benghalensis | 1–16 | Sensitive | |
Polyalthia longifolia | 1–16 | Sensitive | |
Mesua fera sp. | 1–16 | Sensitive | |
Mimusops elengi | 1–16 | Sensitive | |
Lagerstroemia speciosa | 1–16 | Sensitive | |
Saraca asoca | 1–16 | Sensitive | |
Duranta repens | 1–16 | Sensitive | |
Manilkara hexandra | 1–16 | Sensitive | |
Ailanthus excelsa | 24.05 | Intermediate | [14] Values from industrial site post-monsoon |
Alstonia scholaris | 18.27 | Intermediate | |
Azadirachta indica | 28.62 | Intermediate | |
Ficus benghalensis | 17.29 | Intermediate | |
Ficus religiosa | 17.27 | Intermediate | |
Mangifera indica | 26.43 | Intermediate | |
Psidium guajava | 18.19 | Intermediate | |
Saraca asoca | 16.46 | Sensitive | |
Tectona grandis | 11.79 | Sensitive | |
Albizia lebbeck | 36.9 | Tolerant | [38] |
Eucalyptus camaldulensis | 21.8 | Intermediate | |
Ficus altissima | 23.1 | Intermediate | |
Prosipis juliflora | 14.8 | Sensitive | |
Ziziphus spina-christi | 58.5 | Tolerant | |
Alstonia scholaris | 60.03 | Tolerant | [42] |
Nerium oleander | 82.14 | Tolerant | |
Tabernaemontana coronaria | 73.13 | Tolerant | |
Thevetia peruviana | 68.22 | Tolerant | |
Celtis occidentalis | 12.9 | Sensitive | [45] |
Tilia × europaea | 8.7 | Sensitive | |
Taxus cuspidata | 6.1–10 | Sensitive | [50] |
Pinus densiflora | 6.1–10 | Sensitive | |
Chionanthus retusus | 6.1–10 | Sensitive | |
Prunus yedoensis | 6.1–10 | Sensitive | |
Zelkova serrata | 6.1–10 | Sensitive | |
Ginkgo biloba | 6.1–10 | Sensitive | |
Cassia fistula | 11.83 | Sensitive | [55] |
Madhuca longifolia | 24.76 | Intermediate | |
Pongamia pinnata | 10.41 | Sensitive | |
Peltophorum pterocarpum | 16.83 | Sensitive | |
Terminalia catappa | 10.59 | Sensitive | |
Pinus densiflora | 8.9 | Sensitive | [63] |
Prunus yedoensis | 8.7 | Sensitive | |
Zelkova serrata | 8.4 | Sensitive | |
Platanus occidentalis | 9.3 | Sensitive | |
Ginkgo biloba | 8.4 | Sensitive | |
Ficus religiosa | 15.23–82.12 | Sensitive–tolerant | [64] |
Anthocephalus cadamba | 59.34–121.11 | Tolerant | |
Lagerstroemia speciosa | 14.77–181.42 | Sensitive–tolerant | |
Cassia siamea | 12.25–18.02 | Sensitive–tolerant | |
Eucalyptus globus | 95.20 | Tolerant | [65] |
Ficus religiosa | 85.45 | Tolerant | |
Mangifera indica | 80.52 | Tolerant | |
Polyalthia longifolia | 79.01 | Tolerant | |
Phyllanthus emblica | 57.88 | Tolerant | |
Citrus limon | 43.57 | Tolerant | |
Lantana camara | 18.14 | Intermediate | |
Ficus benghalensis | 26.01 | Intermediate | [66] |
Cassia fistula L. | 24.52 | Intermediate | |
Ficus religiosa | 23.35 | Intermediate | |
Polyalthia longifolia | 22.88 | Intermediate | |
Drypetes roxburghii | 22.11 | Intermediate | |
Zizyphus jujuba Lamk. | 21.37 | Intermediate | |
Delonix regia | 20.58 | Intermediate | |
Terminalia arjuna | 20.54 | Intermediate | |
Psidium guajava L. | 20.38 | Intermediate | |
Albizia lebbeck Linn. | 20.00 | Intermediate | |
Kigelia pinnata | 19.87 | Intermediate | |
Ficus glomerata (Roxb.) | 19.22 | Intermediate | |
Millingtonia hortensis | 17.64 | Intermediate | |
Anthocephalus indicus | 17.36 | Intermediate | |
Mangifera indica | 16.89 | Sensitive | |
Dalbergia sissoo | 15.95 | Sensitive | |
Nerium indicum | 15.09 | Sensitive | |
Azadirachta indica Juss | 15.08 | Sensitive | |
Artocarpus heterophyllus | 14.55 | Sensitive | |
Bauhinia purpurea | 14.02 | Sensitive | |
Alstonia scholaris | 13.90 | Sensitive | |
Tectona grandis | 13.29 | Sensitive | |
Bauhinia variegata | 12.11 | Sensitive | |
Holoptelea integrifolia | 11.72 | Sensitive | |
Cassia siamea | 11.63 | Sensitive | |
Terminalia bellirica | 11.60 | Sensitive | |
Murraya peniculata | 11.17 | Sensitive | |
Syzygium cumini | 11.09 | Sensitive | |
Madhuca indica | 11.01 | Sensitive | |
Mangifera indica | 26.66 | Intermediate | [67] |
Ficus religiosa | 18.4 | Intermediate | |
Plumeria rubra | 13.36 | Sensitive | |
Lagestroemia speciosa | 13.66 | Sensitive | |
Alstonia scholaris | 11.18 | Sensitive | |
Butea monosperma | 18.84 | Intermediate | |
Polyalthia longifolia | 16.28 | Sensitive | |
Ricinus communis | 24.75 | Intermediate | [68] |
Bougainvillea glabra | 20.92 | Intermediate | |
Myoporum pictum | 14.18 | Sensitive | |
Juniperus procera | 13.76 | Sensitive | |
Phoenix caespitosa | 13.63 | Sensitive | |
Shinusmolle | 13.57 | Sensitive | |
Hibiscus rosa-sinensis | 12.38 | Sensitive | |
Catharanthus roseus | 11.2 | Sensitive | |
Tagetes tenuifolia | 9.93 | Sensitive | |
Vitis vinifera | 9.69 | Sensitive | |
Mangífera indica | 18.00 | Intermediate | [69] |
Tabebuia chrysantha-rosea | 12.00 | Sensitive | |
Erythrina fusca | 11.00 | Sensitive | |
Jacaranda mimosifolia | 9.00 | Sensitive | |
Fraxinus uhdei | 12.00 | Sensitive | |
Spathodea campanulata | 10.00 | Sensitive | |
Azadirachta indica | 15.84 | Sensitive | [70] |
Bougainvillea spectabilis | 16.0 | Sensitive | |
Ficus benghalensis | 26.40 | Intermediate | |
Ficus religiosa | 29.34 | Intermediate | |
Nerium indicum | 17.8 | Intermediate | |
Plumeria rubra | 25.4 | Intermediate | |
Saraca asoca | 21.99 | Intermediate | |
Tabernaemontana divaricata | 20.88 | Intermediate | |
Terminalia arjuna | 15.29 | Sensitive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diana Grecia, A.-M.; Sergio Arturo, T.-S.; Marlenne, G.-R. Review: Implications of Air Pollution on Trees Located in Urban Areas. Earth 2025, 6, 38. https://doi.org/10.3390/earth6020038
Diana Grecia A-M, Sergio Arturo T-S, Marlenne G-R. Review: Implications of Air Pollution on Trees Located in Urban Areas. Earth. 2025; 6(2):38. https://doi.org/10.3390/earth6020038
Chicago/Turabian StyleDiana Grecia, Alamilla-Martínez, Tenorio-Sánchez Sergio Arturo, and Gómez-Ramírez Marlenne. 2025. "Review: Implications of Air Pollution on Trees Located in Urban Areas" Earth 6, no. 2: 38. https://doi.org/10.3390/earth6020038
APA StyleDiana Grecia, A.-M., Sergio Arturo, T.-S., & Marlenne, G.-R. (2025). Review: Implications of Air Pollution on Trees Located in Urban Areas. Earth, 6(2), 38. https://doi.org/10.3390/earth6020038