Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine
Abstract
:1. Introduction
- assess the spatial and temporal patterns of NDVI, EVI, SAVI, MSAVI, GNDVI, NDRE, and NDWI within the Cheremsky Nature Reserve using Sentinel-2 data processed in GEE;
- investigate the relationships between these indices to identify the main drivers of wetland variability;
- investigate which of the indices are most appropriate for the studies of Ukrainian Polissya wetlands.
2. Materials and Methods
2.1. Study Region
- groundwater of modern bog deposits;
- groundwater of upper Quaternary alluvial deposits;
- groundwater of middle Quaternary lake-alluvial deposits;
2.2. Datasets
2.3. Methodology
2.3.1. Vegetation Indexes
2.3.2. Correlation Analysis
2.3.3. K-Means Point Classification
2.3.4. Random Forest Feature Importance
2.3.5. Principal Component Analysis (PCA)
3. Results
3.1. Trend Analysis and Correlation Relationship
3.2. K-Means Clustering and Feature Importance
Principal Component Analysis (PCA)
4. Discussion
5. Recommendations
- Both indices NDVI or GNDVI are strongly represented in PC1 and reflect the overall vegetation condition (”greenness“). Given their high correlation, the selection of one index over the other can be made to reduce redundancy. While NDVI is more conventional and extensively utilized, GNDVI might be preferable if sensitivity to the green spectrum is a salient factor.
- NDWI is paramount for monitoring the water content and is distinctly emphasized in PC1 and PC7. Its inclusion is imperative in the assessment of the hydrological condition of bogs.
- EVI is presented in PC2 and PC3, providing additional information on vegetation canopy structure and biomass. It is less sensitive to atmospheric and soil effects than NDVI. The incorporation of EVI can enhance our comprehension of the structural characteristics of wetland vegetation.
- NDRE exerts a substantial influence on PC3 and PC4, underscoring its significance in evaluating chlorophyll content and vegetation health, particularly in dense stands. The utilization of NDRE can facilitate the discernment of alterations in the physiological state of wetland vegetation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulish, I.; Kaplenko, H.; Martyniuk, U.; Semchuk, I.; Kravtsiv, I.; Dorosh, M.; Chemerys, V. Harnessing the Resource Potential of Wetlands:The Environmental Context. Ukr. J. Ecol. 2021, 11, 117–123. [Google Scholar]
- Frolking, S.; Talbot, J.; Jones, M.C.; Treat, C.C.; Kauffman, J.B.; Tuittila, E.S.; Roulet, N. Peatlands in the Earth’s 21st Century Climate System. Environ. Rev. 2011, 19, 371–396. [Google Scholar] [CrossRef]
- Harenda, K.M.; Lamentowicz, M.; Samson, M.; Chojnicki, B.H. The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In Interdisciplinary Approaches for Sustainable Development Goals; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Convention on Wetlands. Global Guidelines for Peatland Rewetting and Restoration; Secretariat of the Convention on Wetlands: Gland, Switzerland, 2021. [Google Scholar]
- Ukraine Needs Peatland Management Reform: Appeal to the Government and the Ministry of Environmental Protection|WWF. Available online: https://www.wwf.mg/en/?16768916/Ukraina-potrebuye-reformy-povodzhennya-torfovyshchamy-zvernennya-do-Uriadu-ta-Ministerstva-zakhystu-dovkillya (accessed on 13 March 2025).
- Cheremske Bog|Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ris/2272 (accessed on 10 March 2025).
- Solovey, T. Wetlands of the Volhynian Polissia (Western Ukraine): Classification, Natural Conditions of Distribution and Spatial Difference. Geol. Q. 2019, 63, 139–149. [Google Scholar] [CrossRef]
- Konishchuk, V.V.; Skakalska, O.I. Drosera in Ukraine: Ecological, Сhorological Specifics and Phytosozonomical Characteristics. Biosyst. Divers. 2019, 27, 3–15. [Google Scholar] [CrossRef]
- Martyniuk, V.; Korbutiak, V.; Hopchak, I.; Pryshchepa, A.; Zubkovych, I.; Shuliakovska, A. Landscape and Limnology Monitoring of Reservoirs in Cheremskyi Nature Reserve. In Proceedings of the 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, Kyiv, Ukraine, 15–18 November 2022; Volume 2022, pp. 1–6. [Google Scholar] [CrossRef]
- Danylyk, I.; Sosnovska, S.; Kuzyarin, O.; Kuzmishyna, I.; Kotsun, L. Monitoring of Rare Vascular Plant Populations in Cheremskyi Nature Reserve (Volyn Region, Ukraine). Notes Curr. Biol. 2018, 8, 40–48. [Google Scholar] [CrossRef]
- Trofymenko, P.; Zatserkovnyi, V.; Kartak, V.; Trofimenko, N.; Karas, I.; Borysov, F. Development of GIS for Assessment of Soil Potential of Polissya of Ukraine. In Proceedings of the International Conference of Young Professionals «GeoTerrace-2020», Lviv, Ukraine, 7–9 December 2020; Volume 2020, pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, S.; Na, X.; Kong, B.; Wang, Z.; Jiang, H.; Yu, H.; Zhao, Z.; Li, X.; Liu, C.; Dale, P. Identifying Wetland Change in China’s Sanjiang Plain Using Remote Sensing. Wetlands 2009, 29, 302–313. [Google Scholar] [CrossRef]
- Frohn, R.C.; Reif, M.; Lane, C.; Autrey, B. Satellite Remote Sensing of Isolated Wetlands Using Object-Oriented Classification of Landsat-7 Data. Wetlands 2009, 29, 931–941. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Monthly Analysis of Wetlands Dynamics Using Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2018, 7, 411. [Google Scholar] [CrossRef]
- Sun, T.; Lin, W.; Chen, G.; Guo, P.; Zeng, Y. Wetland Ecosystem Health Assessment through Integrating Remote Sensing and Inventory Data with an Assessment Model for the Hangzhou Bay, China. Sci. Total Environ. 2016, 566–567, 627–640. [Google Scholar] [CrossRef]
- Sentinel-2-Sentinel Online. Available online: https://sentinels.copernicus.eu/copernicus/sentinel-2 (accessed on 13 March 2025).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Li, L.; Vrieling, A.; Skidmore, A.; Wang, T.; Muñoz, A.R.; Turak, E. Evaluation of MODIS Spectral Indices for Monitoring Hydrological Dynamics of a Small, Seasonally-Flooded Wetland in Southern Spain. Wetlands 2015, 35, 851–864. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Brisco, B. Spectral Analysis of Wetlands Using Multi-Source Optical Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 119–136. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral Vegetation Indices of Wetland Greenness: Responses to Vegetation Structure, Composition, and Spatial Distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- УКАЗ ПРЕЗИДЕНТА УКРАЇНИ №1234/2001—Офіційне Інтернет-Представництвo Президента України. Available online: https://www.president.gov.ua/documents/12342001-213 (accessed on 13 March 2025).
- Martyniuk, V.; Korbutiak, V.; Hopchak, I.; Kovalchuk, I.; Zubkovych, I. Methodology for Assessing the Geoecological State of Landscape-Lake Systems and Their Cartographic Modelling (Case Study of Lake Bile, Rivne Nature Reserve, Ukraine). Baltica 2023, 36, 13–29. [Google Scholar] [CrossRef]
- Kovalchuk, I.P.; Martyniuk, V.A. Methodology and Experience of Landscape-Limnological Research into Lake-Basin Systems of Ukraine. Geogr. Nat. Resour. 2015, 36, 305–312. [Google Scholar] [CrossRef]
- Pavlovska, T.S.; Kovalchuk, I.P. Geomorphology: Textbook for Students of Higher Education Institutions; VezhaDruk: Lutsk, Ukraine, 2022. [Google Scholar]
- Onishchuk, V.V. Estimation of Difersity Ecosystems Cheremskyi Natural Reserve on the Basis of Cartographical Modelling. Ph.D. Thesis, Kyiv National Taras Shevchenko University, Kyiv, Ukraine, 2006. [Google Scholar]
- Boyarin, M.V.; Savchuk, L.A. Ecological Description of Rare Species of Plants of Cheremskyi Nature Reserve Included in International Red Lists. Man Environ. Issues Neoecol. 2017, 1–2, 77–85. [Google Scholar] [CrossRef]
- Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR)|Earth Engine Data Catalog|Google for Developers. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#terms-of-use (accessed on 13 March 2025).
- Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.L. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System. Water 2019, 11, 62. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Peterson, S.H.; Rechel, J. Use of Normalized Difference Water Index for Monitoring Live Fuel Moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- McCool, M.; Robison, A.D.; Reinders, J. K-Means Clustering. In Structured Parallel Programming; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Melnyk, O.; Manko, P.; Brunn, A. Remote Sensing Methods for Estimating Tree Species of Forests in the Volyn Region, Ukraine. Front. For. Glob. Change 2023, 6, 5. [Google Scholar] [CrossRef]
- Umargono, E.; Suseno, J.E.; Vincensius Gunawan, S. K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25–26 November 2019. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and Regression Trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Su, Z.; Xiang, L.; Steffen, H.; Jia, L.; Deng, F.; Wang, W.; Hu, K.; Guo, J.; Nong, A.; Cui, H.; et al. A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery. Remote Sens. 2024, 16, 2749. [Google Scholar] [CrossRef]
- Lefebvre, G.; Davranche, A.; Willm, L.; Campagna, J.; Redmond, L.; Merle, C.; Guelmami, A.; Poulin, B. Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sens. 2019, 11, 2210. [Google Scholar] [CrossRef]
Year | Number of Images | Year | Number of Images |
---|---|---|---|
2017 | 29 | 2021 | 74 |
2018 | 64 | 2022 | 72 |
2019 | 74 | 2023 | 72 |
2020 | 72 | 2024 | 74 |
№ | Index | Formula | Bands | Central Wavelength (nm) 2A/2B | Bandwidth (nm) 2A/2B | Ref. |
---|---|---|---|---|---|---|
1 | NDVI | B4, B8 | 664.6/664.9, 832.8/832.9 | 31/31, 106/106 | [29] | |
2 | EVI | B2, B4, B8 | 492.4/492.1 664.6/664.9, 832.8/832.9 | 66/66 31/31, 106/106 | [30] | |
3 | SAVI | B4, B8 | 664.6/664.9, 832.8/832.9 | 31/31, 106/106 | [31] | |
4 | MSAVI | B4, B8 | 664.6/664.9, 832.8/832.9 | 31/31, 106/106 | [32] | |
5 | GNDVI | B3, B8 | 559.8/559.0 832.8/832.9 | 36/36, 106/106 | [33] | |
6 | NDRE | B5, B8 | 704.1/703.8, 832.8/832.9 | 15/16, 106/106 | [34] | |
7 | NDWI | B8a, B11 (B12) | 864.7/864.0, 1613.7/1610.4 (2202.4/2185.7) | 21/22, 91/94 (175/185) | [35] |
NDVI | EVI | SAVI | MSAVI | GNDVI | NDRE | NDWI | |
---|---|---|---|---|---|---|---|
NDVI | 1.000 | 0.466 | 0.862 | 0.827 | 0.981 | 0.932 | −0.981 |
EVI | 0.466 | 1.000 | 0.719 | 0.765 | 0.393 | 0.438 | −0.393 |
SAVI | 0.862 | 0.719 | 1.000 | 0.994 | 0.841 | 0.757 | −0.841 |
MSAVI | 0.827 | 0.765 | 0.994 | 1.000 | 0.803 | 0.730 | −0.803 |
GNDVI | 0.981 | 0.393 | 0.841 | 0.803 | 1.000 | 0.910 | −1.000 |
NDRE | 0.932 | 0.438 | 0.757 | 0.730 | 0.910 | 1.000 | −0.910 |
NDWI | −0.981 | −0.393 | −0.841 | −0.803 | −1.000 | −0.910 | 1.000 |
Number of Clusters | SSE | Silhouette Score |
---|---|---|
2 | 271.4136 | 0.5908 |
3 | 169.8345 | 0.4079 |
4 | 130.4163 | 0.3882 |
5 | 102.8843 | 0.3627 |
6 | 89.1172 | 0.3314 |
7 | 78.8167 | 0.3247 |
8 | 70.7839 | 0.3115 |
9 | 63.8468 | 0.3172 |
10 | 59.2894 | 0.2989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnyk, O.; Brunn, A. Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine. Earth 2025, 6, 28. https://doi.org/10.3390/earth6020028
Melnyk O, Brunn A. Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine. Earth. 2025; 6(2):28. https://doi.org/10.3390/earth6020028
Chicago/Turabian StyleMelnyk, Oleksandr, and Ansgar Brunn. 2025. "Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine" Earth 6, no. 2: 28. https://doi.org/10.3390/earth6020028
APA StyleMelnyk, O., & Brunn, A. (2025). Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine. Earth, 6(2), 28. https://doi.org/10.3390/earth6020028