Effectiveness of the VFSMOD Model in Simulating Sediment Trapping by a Vegetative Filter Strip: Case of the Lobo Reservoir in Daloa (Central–West Côte d’Ivoire)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Site
2.1.2. Data
- -
- the soil properties of the source of pollution (the degree of compaction, grain size, and structure of the soil) from the FAO (Food and Agriculture Organization of the United Nations) database [25], the potential location of the grassy strip and land use (different crops grown in the source pollution area);
- -
- the average concentration of sediment entering the reservoir from April to December 2019, provided by the LSTE (Laboratory of Environmental Sciences and Technology) of Jean Lorougnon Guédé University;
- -
- rainfall and temperature data from the Daloa station at daily time intervals from 2000 to 2017, provided by SODEXAM (the Aeronautical and Meteorological Development and Exploitation Company).
2.1.3. Work Tools
2.2. Methods
2.2.1. Description of the VFSMOD Model
- -
- Hydrology
- -
- Sediment and chemical transport
2.2.2. Steps
- -
- Evaluation of runoff from the source of pollution (contributing surface) during a rainy episode;
- -
- Calculation of the incoming sediment load;
- -
- Simulation of runoff reduction and incoming sediments within the grassy filter strip.
- Evaluation of runoff from the pollution source (contributing area) during a rain episode
- -
- Q (mm) is the direct runoff,
- -
- P (mm) is the cumulative precipitation,
- -
- Ia (mm) are the initial losses,
- -
- S (mm) represents the antecedent soil moisture.
- -
- L (h) is the delay time,
- -
- l (m) is the longest hydraulic path,
- -
- S (mm) is the maximum soil retention,
- -
- Y (%) is the average slope of the watershed.
- -
- Tp (h) is the peak time,
- -
- ∆D (h) is the elementary rain duration,
- -
- L (h) is the watershed delay time.
- -
- R (mm) is the cumulative net rain,
- -
- P (mm) is the cumulative rain,
- -
- Ia (mm) are the cumulative initial losses,
- -
- F (mm) is the cumulative infiltration.
- Calculation of incoming sediment load
- α = 11.8 and β = 0.56 are two parameters of the MUSLE model;
- Q is the volume of runoff (m3);
- Qp is the peak flow (m3.s−1) during the flood;
- K is the soil erodibility factor (t.ha−1MJ−1mm.h−1);
- LS is the topographic factor (unitless);
- C is the plant cover management factor (unitless);
- P is the anti-erosion development factor (unitless).
- Simulation of runoff and incoming sediments trapping within the grassy strip
- -
- integrate the runoff previously assessed and the hyetogram of the event into the VFSMOD model;
- -
- provide information on the soil and the properties of the incoming sediment;
- -
- execute the program for reducing the sediments and runoff flows entering the grassy strip;
- -
- determine the optimal width of the grassy strip.
- Er: Retention capacity (%);
- Qout: Flow leaving the vegetative filtering band [L3T−1];
- Qin: Flow entering the vegetative filter strip [L3T−1].
- l: the width of the vegetative filter strip [L];
- s: the slope of the land under the vegetative filter strip (%);
- n: is Manning’s roughness coefficient [LT−1/3];
- h: is the depth of overland flow [L].
3. Results
3.1. Geometry of the Contributing Surface Area (Source of Pollution)
3.2. Unit Hydrograph (UH) of the Contributing Area
3.3. Hyetogram of the Contributing Area
3.4. Runoff and Sediment Entering the Grassy Strip Trapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koukougnon, W.G. Milieu Urbain et Accès à l’Eau Potable: Cas de Daloa (Centre-Ouest de la Côte d’Ivoire). Ph.D. Thesis, Université Félix Houphouet Boigny Abidjan, Abidjan, Cote d’Ivoire, 2012; 323p. [Google Scholar]
- Komelan, Y. Eutrophisation des Retenues d’Eau en Côte d’Ivoire et Gestion Intégrée de leur Bassin Versant: Cas de la Lobo à Daloa. Master’s Thesis, École d’Ingénieurs de l’Équipement Rural de Ouagadougou, Ouagadougou, Burkina Faso, 1999; 56p. [Google Scholar]
- Floret, C.; (IRD, Dakar, Sénégal); Hien, V.; (INERA, Ouagadougou, Burkina Faso); Pontanier, R.; (INERA, Ouagadougou, Burkina Faso). Personal communication, 1993.
- Koua, T.J.-J.; Dhanesh, Y.; Jeong, J.; Srinivasan, R.; Anoh, K.A. Implementation of the Semi-Distributed SWAT (Soil and Water Assessment Tool) Model Capacity in the Lobo Watershed at Nibéhibé (Center-West of Côte D’Ivoire). J. Geosci. Environ. Prot. 2021, 9, 21–38. [Google Scholar]
- Maïga, A.; Denyigba, K.; Allorent, J. Eutrophisation des Petites Retenues d’eau en Afrique de l’Ouest: Causes et Conséquences: Cas de la Retenue D’eau de la Lobo en Côte d’Ivoire. Sud Sci. Technol. 2001, 7, 16–29. [Google Scholar]
- Lecomte, V. Transfert de Produits Phytosanitaires par le Ruissellement et l’Érosion de la Parcelle au Bassin Versant. Ph.D. Thesis, École Nationale du Génie Rural des Eaux et des Forêts de Montpellier, Montpellier, France, 1999. [Google Scholar]
- Peter, G.V.; Brussaard, C.P.; Nejstgaard, J.C.; Van Leeuwe, M.A.; Lancelot, C.; Medlin, L.K. Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. Biogeochemistry 2007, 83, 311–330. [Google Scholar]
- Koua, T.J.-J.; Jeong, J.; Alemayehu, T.A.; Dhanesh, Y.; Srinivasan, R. Spatial Distribution of Nutrient Loads Based on Mineral Fertilizers Applied to Crops: Case Study of the Lobo Basin in Côte d’Ivoire (West Africa). Appl. Sci. 2023, 13, 9437. [Google Scholar] [CrossRef]
- Soro, M.-P.; N’goran, K.M.; Ouattara, A.A.; Yao, K.M.; Kouassi, N.L.; Diaco, T. Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Côte d’Ivoire (West Africa). Mar. Pollut. Bull. 2023, 186, 114391. [Google Scholar] [CrossRef] [PubMed]
- N’goran, K.M.; Soro, M.-P.; Kouassi, N.L.B.; Trokourey, A.; Yao, K.M. Distribution, Speciation and Bioavailability of Nutrients in M’Badon Bay of Ebrie Lagoon, West Africa (Côte d’Ivoire). Chem. Afr. 2023, 6, 1619–1632. [Google Scholar] [CrossRef]
- Traoré, K.; Djaha, K.; Koffi, N.A. Analyse de la flore aquatique envahissante dans les plans d’eau de la ville de Daloa (Centre-ouest de la Côte d’Ivoire). J. Appl. Biosci. 2019, 142, 14509–14518. [Google Scholar]
- Kumwimba, M.N.; Akter, S.; Li, X.; Dzakpasu, M.; Ifon, B.E.; Manirakiza, B.; Muyembe, K.; Zhang, Y.; Huang, J.; Guadie, A. Nutrient and sediment retention by riparian vegetated buffers strips: Impacts of buffer length, vegetation type and season. Agric. Ecosyst. Environ. 2024, 369, 109050. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Q.; You, Q.; Huang, T.; Zhang, X. Influence of vegetation filter strip on slope Runoff, Sediment Yield and Nutrient loss. Appl. Sci. 2022, 12, 4129. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Parsons, J.E. VFSMOD-W Vegetative Filter Strips Modelling System. MODEL DOCUMENTATION & USER’S MANUAL Version 6.x. 2020. 194p. Available online: https://abe.ufl.edu/faculty/carpena/files/pdf/software/vfsmod/VFSMOD_UsersManual_v6.pdf (accessed on 5 May 2021).
- Sur, R.; Muñoz-Carpena, R.; Reichenberger, S.; Hammel, K.; Meyer, H.; Kehrein, N. Implementation of Shallow Water Table Effects on Pesticide Runoff Mitigation Efficiency by Vegetative Filter Strips within SWAN-VFSMOD. EGU General Assembly 2021. 19–30 April 2021, EGU21-7829. Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-7829.html (accessed on 1 January 2024).
- Minwoo, S.; Jisun, B.; Hyun-Dong, Y.; Tae-Hwa, J. A study on trapping efficiency of the non-point source pollution in Cheongmi Stream using VFSMOD-W. J. Korea Contents Assoc. 2016, 16, 140–150. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Reichenberger, S.; Sur, R.; Hammel, K. Fate of pesticide residues in vegetative filter strips in long-term exposure assessments: VFSMOD development and analysis. EGU General Assembly 2021, 19–30 April 2021. EGU21-1735. Available online: https://doi.org/10.5194/egusphere-egu21-1735 (accessed on 1 January 2024).
- Koua, T. Apport de la Modélisation Hydrologique et des Systèmes d’Information Géographique (SIG) dans L’étude du Transfert Des Polluants et des Impacts Climatiques sur les Ressources en eau: Cas du bassin Versant du lac de Buyo (Sud-ouest de la Côte d’Ivoire). Ph.D. Thesis, Felix Houphouet Boigny University of Cocody, Abidjan, Côte d’Ivoire, 11 December 2014. [Google Scholar]
- Yao, A.B. Evaluation des Potentialités en eau du Bassin Versant de la Lobo en vue d’une Gestion Rationnelle au Centre-Ouest de la Côte d’Ivoire. Ph.D. Thesis, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire, 2015. [Google Scholar]
- Koffi, B.; Kouassi, K.L.; Sanchez, M.; Kouadio, Z.A.; Kouassi, K.H.; Yao, A.B. Estimation de la sédimentation dans la retenue d’eau de la rivière Lobo à l’aide de la théorie des bassins de décantation. In Proceedings of the XVIèmes Journées Nationales Génie Côtier—Génie Civil, Daloa, Côte d’Ivoire, 8–10 December 2020. [Google Scholar]
- Brou, T.; Akindès, F.; Bigot, S. La variabilité climatique en Côte d’Ivoire: Entre perceptions sociales et réponses agricoles. Cah. Agric. 2005, 14, 533–540. [Google Scholar]
- Delor, C.; Siméon, Y.; Vidal, M.; Zeade, Z.; Koné, Y.; Adou, M.; Dibouahi, M.; Irié, D.B.; N’da, B.D.; Pouclet, D.; et al. Carte Géologique de la Côte d’Ivoire à 1/200 000, Feuille Nassian; Mémoire n°9 de la Direction des Mines et de la Géologie; Ivory Coast Ministry of Mines and Energy: Abidjan, Côte d’Ivoire, 1995. [Google Scholar]
- Yao, A.B.; Bi Tié, A.G.; Kane, A.; Mangoua, J.O.; Kouamé, A.K. Cartographie du potentiel en eau souterraine du bassin versant de la Lobo (Centre-Ouest, Côted’Ivoire): Approche par analyse multicritère. Hydrol. Sci. J. 2016, 61, 856–867. [Google Scholar]
- Jean Olivier, K.K.; Brou, D.; Jules, M.O.M.; Georges, E.S.; Frédéric, P.; Didier, G. Estimation of Groundwater Recharge in the Lobo Catchment (Central-Western Region of Côte d’Ivoire). Hydrology 2022, 9, 23. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Velthuizen, H.V.; Verest, L. Harmonized World Soil Database Version1.1. 2009. 20p. Available online: http://www.fao.org/3/aq361e/aq361e.pdf (accessed on 1 September 2012).
- Lighthill, M.J.; Whitham, C.B. On kinematic waves: Flood movement in long rivers. Proc. R. Soc. Lond. Ser. A 1955, 22, 281–316. [Google Scholar]
- Barfield, B.J.; Tollner, E.W.; Hayes, J.C. The Use of Grass Filters for Sediment Control in Strip Mining Drainage. Vol. I: Theoretical Studies on Artificial Media; Pub. no. 35-RRR2-78; Institute for Mining and Minerals Research, University of Kentucky: Lexington, Kentucky, 1978. [Google Scholar]
- Barfield, B.J.; Tollner, E.W.; Hayes, J.C. Filtration of sediment by simulated vegetation I. Steady-state flow with homogeneous sediment. Trans. ASAE 1979, 22, 540–545. [Google Scholar] [CrossRef]
- Hayes, J.C.; Barfield, B.J.; Barnhisel, R.I. Filtration of sediment by simulated vegetation II. Unsteady flow with non-homogeneous sediment. Trans. ASAE 1979, 22, 1063–1967. [Google Scholar] [CrossRef]
- Jackson, S.; Hendley, P.; Jones, R.; Poletika, N.; Russell, M. Comparison of regulatory method estimated drinking water exposure concentrations with monitoring results from surface drinking water supplies. J. Agr. Food Chem. 2005, 53, 8840–8847. [Google Scholar] [CrossRef] [PubMed]
- Tollner, E.W.; Barfield, B.J.; Haan, C.T.; Kao, T.Y. Suspended sediment filtration capacity of simulated vegetation. Trans. ASAE 1976, 19, 678–682. [Google Scholar] [CrossRef]
- Tollner, E.W.; Barfield, B.J.; Vachirakornwatana, C.; Haan, C.T. Sediment deposition patterns in simulated grass filters. Trans. ASAE 1977, 20, 940–944. [Google Scholar] [CrossRef]
- Wilson, B.N.; Barfield, B.J.; Moore, I.D. A Hydrology and Sedimentology Watershed Model, Part I: Modeling Techniques; Technical Report; Department of Agricultural Engineering, University of Kentucky: Lexington, Kentucky, 1981. [Google Scholar]
- Catalogne, C.; Lauvernet, C.; Carluer, N. Guide d’Utilisation de l’Outil BUVARD Pour le Dimensionnement des Bandes Tampons Végétalisées Destinées à Limiter les Transferts de Pesticides par Ruissellement. Rapport de Recherche IRSTEA, France. 2018. 66p. Available online: https://hal.inrae.fr/hal-02607260/document (accessed on 1 May 2022).
- USDA-SC. Design hydrographs. In National Engineering Handbook Hydrology, 2nd ed.; Vincent, M., William, O., Robert, R., Eds.; Departement of Agriculture: Washington, DC, USA, 1972; Section 4; pp. 1–127. Available online: https://www.hydrocad.net/neh/630ch21.pdf (accessed on 1 April 2024).
- Carluer, N.; Fontaine, A.; Lauvernet, C.; Muñoz-Carpena, R. Guide de Dimensionnement des Zones Tampons Enherbées ou Boisées Pour Réduire la Contamination des Cours d’Eau par les Produits Phytosanitaires. Rapport de Recherche IRSTEA, France. 2020. 72p. Available online: https://hal.inrae.fr/hal-02595578v1/file/pub00032826.pdf (accessed on 1 May 2022).
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; International Edition; Mc-Graw-Hill Book Company: New York, NY, USA, 1988; pp. 153–155. Available online: https://wecivilengineers.wordpress.com/wp-content/uploads/2017/10/applied-hydrology-ven-te-chow.pdf (accessed on 1 February 2023).
- Williams, J.R. Sediment-Yield Prediction with Universal Equation Using Runoff Energy Factor. In Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory, Oxford, MS, USA, 28–30 November 1972. [Google Scholar]
- Duchemin, M.; Majdoulé, R. Les bandes végétales filtrantes: De la parcelle au bassin versant. Vecteur Environ. 2004, 37, 36–50. [Google Scholar]
- The Importance of Wetlands & Uplands Conservation Practices in Watersheds Management: Functions & Values for Water Quality & Quantity. Ducks Unlimited Canada. Available online: https://www.ducks.ca/news/pdf/pipeshrt.pdf (accessed on 21 May 2024).
- Bae, J.H.; Han, J.; Lee, D.; Yang, J.E.; Kim, J.; Lim, K.J.; Neff, J.C.; Jang, W.S. Evaluation of Sediment Trapping Efficiency of Vegetative Filter Strips Using Machine Learning Models. Sustainability 2019, 11, 7212. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Helmers, M.J.; Eisenhauer, D.E. A design aid for sizing filter strips using buffer area ratio. J. Soil Water Conserv. 2011, 66, 29–39. [Google Scholar] [CrossRef]
- Breune, I.; Audet, M.A.; Parent, G. Le Ray-Grass Intercalaire: Essai de Variétés, Essai de Semis à Différents Stades du Maïs. Rapport Final Club Agroenvironnemental de l’Estrie, Québec (Canada). 2015. 60p. Available online: https://www.agrireseau.net/documents/Document_90361.pdf (accessed on 1 February 2019).
- Kieta, K.A.; Owens, P.N.; Lobb, D.A.; Vanrobaeys, J.A.; Flaten, D.N. Phosphorus dynamics in vegetated buffer strips in cold climates: A review. Environ. Rev. 2018, 26, 255–272. [Google Scholar] [CrossRef]
- Hénault-Ethier, L.; Gomes, M.P.; Lucotte, M.; Smedbol, É.; Maccario, S.; Lepage, L.; Juneau, P.; Labrecque, M. High yields of riparian buffer strips planted with Salix miyabena ‘SX64’ along field crops in Québec, Canada. Biomass Bioenergy 2017, 105, 219–229. [Google Scholar] [CrossRef]
- Lind, L.; Hasselquista, E.M.; Laudona, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manag. 2019, 249, 109391. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R.A.; Eitzel, M. A Review of Vegetated Buffers and a Meta-analysis of Their Mitigation Efficacy in Reducing Nonpoint Source Pollution. J. Environ. Qual. 2010, 39, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Remaury, A. Effet de la Densité de Plantation de Peupliers à Croissance Rapide sur L’érosion des Sols Recouvrant des Pentes de Stériles Miniers en Région Boréale. Master’s Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2017. Available online: https://depositum.uqat.ca/id/eprint/713 (accessed on 1 May 2024).
- Benoît, P.; Magridal, I.; Pot, V.; Souiller, C. Fonctions environnementales des dispositifs enherbés en vue de la gestion et de la maîtrise des impacts d’origine agricole. Cas des pesticides. Etude Gest. Sols 2003, 10, 299–312. [Google Scholar]
- Borin, M.; Vianello, M.; Morari, F.; Zanin, G. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North East Italy. Agric. Ecosyst. Environ. 2005, 105, 101–114. [Google Scholar] [CrossRef]
- Schmitt, T.J.; Dosskey, M.G.; Hoagland, K.D. Filter Strip Performance and Processes for Different Vegetation, Widths, and Contaminants. J. Environ. Qual. 1999, 28, 1479–1489. [Google Scholar] [CrossRef]
- Mouisat, A.; Douaik, A.; Al Faiz, C.; Harrouni, C.; Derradji, A.; Benaoda, N.-E. Suivi De La Cinétique Du Développement Racinaire Des Plantes Destinées A La Stabilisation Des Talus Marneux De L’axe Autoroutier Fès-Taza (Nord Du Maroc). Eur. Sci. J. 2020, 16, 287–311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koua, T.J.-J.; Kouassi, K.H.; Kouassi, K.L.; Allou, K.A.; Jeong, J. Effectiveness of the VFSMOD Model in Simulating Sediment Trapping by a Vegetative Filter Strip: Case of the Lobo Reservoir in Daloa (Central–West Côte d’Ivoire). Earth 2024, 5, 928-944. https://doi.org/10.3390/earth5040048
Koua TJ-J, Kouassi KH, Kouassi KL, Allou KA, Jeong J. Effectiveness of the VFSMOD Model in Simulating Sediment Trapping by a Vegetative Filter Strip: Case of the Lobo Reservoir in Daloa (Central–West Côte d’Ivoire). Earth. 2024; 5(4):928-944. https://doi.org/10.3390/earth5040048
Chicago/Turabian StyleKoua, Tanoh Jean-Jacques, Kouakou Hervé Kouassi, Kouakou Lazare Kouassi, Koffi Alfred Allou, and Jaehak Jeong. 2024. "Effectiveness of the VFSMOD Model in Simulating Sediment Trapping by a Vegetative Filter Strip: Case of the Lobo Reservoir in Daloa (Central–West Côte d’Ivoire)" Earth 5, no. 4: 928-944. https://doi.org/10.3390/earth5040048
APA StyleKoua, T. J.-J., Kouassi, K. H., Kouassi, K. L., Allou, K. A., & Jeong, J. (2024). Effectiveness of the VFSMOD Model in Simulating Sediment Trapping by a Vegetative Filter Strip: Case of the Lobo Reservoir in Daloa (Central–West Côte d’Ivoire). Earth, 5(4), 928-944. https://doi.org/10.3390/earth5040048