Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Parameters and Datasets
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Yin, Q.; Li, L.; Hua, X. Ecosystem health assessment by using remote sensing derived data: A case study of terrestrial region along the coast in Zhejiang Province. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Pradhan, B.; Yoon, S.; Lee, S. Examining the Dynamics of Vegetation in South Korea: An Integrated Analysis Using Remote Sensing and In Situ Data. Remote Sens. 2024, 16, 300. [Google Scholar] [CrossRef]
- Zektser, I.S.; Loaiciga, H.A. Groundwater fluxes in the global hydrologic cycle: Past, present and future. J. Hydrol. 1993, 144, 405–427. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.; Waheed, A.; Lin, T.; Zhao, W.; Zhao, X. Drought Resistance of Desert Riparian Forests: Vegetation Growth Index and Leaf Physiological Index Approach. Sustainability 2024, 16, 532. [Google Scholar] [CrossRef]
- Tao, Y.; Meng, E.; Huang, Q. Spatiotemporal Changes and Hazard Assessment of Hydrological Drought in China Using Big Data. Water 2024, 16, 106. [Google Scholar] [CrossRef]
- Latrech, B.; Hermassi, T.; Yacoubi, S.; Slatni, A.; Jarray, F.; Pouget, L.; Ben Abdallah, M.A. Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region. Agriculture 2024, 14, 160. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, Z.; He, T.; Tang, Q.; Xiao, P.; Zhang, P.; Wang, L. Attributing the Evapotranspiration Trend in the Upper and Middle Reaches of Yellow River Basin Using Global Evapotranspiration Products. Remote Sens. 2022, 14, 175. [Google Scholar] [CrossRef]
- Wijeratne, V.P.I.S.; Li, G.; Mehmood, M.S.; Abbas, A. Assessing the Impact of Long-Term ENSO, SST, and IOD Dynamics on Extreme Hydrological Events (EHEs) in the Kelani River Basin (KRB), Sri Lanka. Atmosphere 2023, 14, 79. [Google Scholar] [CrossRef]
- Zhang, F.; Tang, P.; Zhou, T.; Liu, J.; Li, F.; Shan, B. Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy 2024, 14, 45. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies usingultisensoryr remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Tian, F.; Qiu, G.; Yang, Y.; Lü, Y.; Xiong, Y. Estimation of evapotranspiration and its partition based on an extended threetemperature model and MODIS products. J. Hydrol. 2013, 498, 210–220. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Harmsen, E.W.; Mecikalski, J.R.; Reventos, V.J.; Álvarez-Pérez, E.; Uwakweh, S.S.; Adorno-García, C. Water and energy balance model GOES-PRWEB: Development and validation. Hydrology 2021, 8, 113. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; Dos Santos, C.A.C.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; Cunha, J.E.B.L.; Ruhoff, A.; Santos, C.A.G. Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 20, 155490. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Lugo, J.; Diaz, D. Developing Sustinable Planing for Heritage Conservation in the Tropics: A GIS-Based Risk and Vulnerability Assessment Profile for Historic Archives in Puerto Rico. WIT Trans. Ecol. Environ. 2018, 217, 613–623. [Google Scholar] [CrossRef]
- Kenner, B.; Russell, D.; Valdes, C.; Sowell, A.; Pham, X.; Terán, A.; Kaufman, J. Puerto Rico’s Agricultural Economy in the Aftermath of Hurricanes Irma and Maria: A Brief Overview. U.S. Department of Agriculture, Economic Research Service, AP-114. April 2023. Available online: https://www.ers.usda.gov/webdocs/publications/106261/ap-114.pdf?v=3172 (accessed on 22 December 2023).
- Running, S.; Mu, Q.; Zhao, M. MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Reddy, S.N.; Manikiam, B. Land Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation. Int. J. Appl. Eng. Res. 2017, 12, 9679–9687. [Google Scholar]
- Vanhellemont, Q. Combined land surface emissivity and temperature estimation from Lansat 8 OLI and TIRS. ISPRS J. Photogramm. Remote Sens. 2020, 166, 390–402. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Testi, L.; Mateos, L.; Fereres, E. Soil Temperature and Soil Heat Flux. In Principles of Agronomy for Sustainable Agriculture, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 69–77. [Google Scholar] [CrossRef]
- Anav, A.; Friedlingstein, P.; Beer, C.; Ciais, P.; Harper, A.; Jones, C.; Murray-Tortarolo, G.; Papale, D.; Parazoo, N.C.; Peylin, P.; et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 2015, 53, 785–818. [Google Scholar] [CrossRef]
- Seixas, H.T.; Brunsell, N.A.; Moraes, E.C.; Oliveira, G.; Mataveli, G. Exploring the ecosystem resilience concept with land surface model scenarios. Ecol. Modell. 2022, 464, 109817. [Google Scholar] [CrossRef]
- Fickert, T. To Plant or Not to Plant, That Is the Question: Reforestation vs. Natural Regeneration of Hurricane-Disturbed Mangrove Forests in Guanaja (Honduras). Forests 2020, 11, 1068. [Google Scholar] [CrossRef]
- Bryant, T.; Waring, K.; Sánchez Meador, A.; Bradford, J.B. A framework for quantifying resilience to forest disturbance. Front. For. Glob. Chang. 2019, 2, 56. [Google Scholar] [CrossRef]
- Zampieri, M.; Grizzetti, B.; Toreti, A.; Palma, P.; Collati, A. Rise and fall of vegetation annual primary production resilience to climate variability projected by a large ensemble of Earth System Models’ simulations. Environ. Res. Lett. 2021, 16, 105001. [Google Scholar] [CrossRef]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Hossain, L.; Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021, 30, e01768. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.R.; Xu, X.; Xie, J. Comparison of multiple models for remote sensing of carbon exchange using MODIS data in conifer-dominated forests. Int. J. Remote Sens. 2014, 35, 8252–8271. [Google Scholar] [CrossRef]
- Panagos, P.; Borelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Zhan, X.; Fang, L.; Yin, J.; Schull, M.; Liu, J.; Hain, C.; Anderson, M.; Kustas, W.; Kalluri, S. Remote Sensing of Evapotranspiration for Global Drought Monitoring. In Global Drought and Flood: Observation, Modeling, and Prediction, 1st ed.; Geophysical Monograph Series; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Net Primary Productivity of Terrestrial Communities: Prediction from Climatological Data. Am. Nat. 1968, 102, 67–74. [Google Scholar] [CrossRef]
- Falloon, P.; Jones, C.D.; Ades, M.; Paul, K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Glob. Biogeochem. Cycles 2011, 25, 3. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
Variables | Description | Values |
---|---|---|
K1 | Thermal constants Band 10 | 774.8853 |
K2 | 1321.0789 | |
ML | Band-specific multiplicative rescaling factor | 3.34 × 10−4 |
AL | Band-specific additive rescaling factor | 0.1 |
Lmax | Maximum value or radiance, Band 10 | 22.0018 |
Lmin | Minimum value or radiance, Band 10 | 0.10033 |
Qcalmax | Maximum values of quantized calibration, Band 10 | 65,535 |
Qcalmin | Minimum value of quantized calibration, Band 10 | 1 |
Year | NDVI | LST | ET | GPP | ||||
---|---|---|---|---|---|---|---|---|
UNITS | ||||||||
- | °C | mm/day | kg/°C/day | |||||
Low | High | Low | High | Low | High | Low | High | |
2012 | 0.0981 | 0.986 | - | - | 1.8374 | 7.8125 | 0.0116 | 3.2762 |
2013 | 0.2229 | 0.9195 | 19.1045 | 33.2603 | 1.2250 | 7.1500 | 0.0235 | 3.2762 |
2014 | 0.265 | 0.9176 | 22 | 34 | 2.2000 | 7.3375 | 0.0372 | 3.2762 |
2015 | 0.2403 | 0.9373 | 22.6019 | 39.3491 | 1.5625 | 8.0375 | 0.0115 | 3.2762 |
2016 | 0.1296 | 0.9941 | 20.6582 | 34.6485 | 1.9875 | 6.8375 | 0.0145 | 3.2762 |
2017 | 0.0774 | 0.9768 | 22 | 35.4926 | 1.9375 | 5.8375 | 0.0147 | 3.2762 |
2018 | 0.4147 | 0.9119 | 23.3586 | 35.6335 | 1.3750 | 4.6125 | 0.0128 | 3.2762 |
2019 | 0.3045 | 0.9622 | 23 | 34 | 1.3999 | 6.1750 | 0.0241 | 3.2762 |
2020 | 0.2037 | 0.9885 | 21.1934 | 35 | 1.8125 | 5.5008 | 0.0089 | 3.2762 |
2021 | 0.2328 | 0.9346 | 22.9827 | 34.1233 | 1.5000 | 8.4250 | 0.0121 | 3.2762 |
2022 | 0.2909 | 0.9323 | 22.8446 | 35.9824 | 2.2000 | 8.3125 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla-Roman, Y.N.; Acuña-Guzman, S.F. Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth 2024, 5, 72-89. https://doi.org/10.3390/earth5010004
Bonilla-Roman YN, Acuña-Guzman SF. Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth. 2024; 5(1):72-89. https://doi.org/10.3390/earth5010004
Chicago/Turabian StyleBonilla-Roman, Yadiel Noel, and Salvador Francisco Acuña-Guzman. 2024. "Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico" Earth 5, no. 1: 72-89. https://doi.org/10.3390/earth5010004
APA StyleBonilla-Roman, Y. N., & Acuña-Guzman, S. F. (2024). Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth, 5(1), 72-89. https://doi.org/10.3390/earth5010004