Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume
Abstract
:1. Introduction
2. Background. River Channel Transverse Structures
3. Methodology
3.1. Inventory of Transverse Structures
3.2. Estimation of the Recharge from Transverse Structures
3.2.1. Wetted Area (WAi)
3.2.2. Vertical Permeability (Kv)
3.2.3. Clogging Correction Factor (Ccfi)
3.2.4. Groundwater Level Correction Factor (GWLcfi)
4. Results
4.1. Description and Analysis of the Database
4.2. Estimation of Unintentional Recharge from Transverse Structures
4.2.1. Wetted Area Calculation behind Each Transverse Structure
4.2.2. Calculation of Kv below Each Transverse Structure
4.2.3. Application of the Groundwater Level Correction Factor (GWLcfi)
4.2.4. Application of the Clogging Correction Factor (Ccfi)
4.2.5. Final Results about Unintentional Recharge from Dykes and Small Dams in Peninsular Spain
4.2.6. Sensitivity Analysis
5. Discussion and Limitations
- The meteorological variability can modify the wetted perimeters of the transversal structures over time, especially given climate change.
- Considering the geometrical configuration of the wetted area using the slopes around each structure in detail, i.e., constructing a micro-elevation model.
- The clogging correction factor could be further improved by considering the year of construction of the structures, assigning a higher value to older structures.
- A mean water table to differentiate between shallow and deep aquifers could also be included.
- The overall moisture conditions of the basin or sub-basin.
- Calculus for the deviation from point estimations of recharge (sub-basin scale).
- Capture of new field data concerning clogging correction factors and anisotropy coefficients.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DINA-MAR. DINA-MAR: La Gestión de la Recarga de Acuíferos en el Marco del Desarrollo Sostenible. Desarrollo Tecnológico (DINA-MAR: Management Aquifer Recharge in the Framework of Sustainable Development. Technological Development); Fernández Escalante, E., Ed.; Grafinat: Madrid, Spain, 2010; ISBN 978-84-614-5123-4. [Google Scholar]
- Fernández Escalante, E.; San Miguel Fraile, M.Á.; Sánchez Serrano, F. El hidrogeoportal DINA-MAR. Aplicación en soporte GIS para determinar zonas susceptibles de aplicar técnicas de recarga gestionada en España (The DINA-MAR hydrogeo-portal. GIS application to determine areas susceptible to the application of managed aquifer recharge techniques in Spain). Bol. Geol. Min. 2014, 125, 341–368. Available online: https://aguas.igme.es/Boletin/2014/125_3/9_%20Articulo%206.pdf (accessed on 13 July 2023).
- Arqued Esquía, V.M. Nuevos Planes Hidrológicos de Cuenca. Novedades en la Política del Agua y Nuevo Ciclo de Planificación Hidrológica y Gestión de Riesgos (ST 31) (New River Basin Management Plans. Novelties in Water Policy for the New Cycle on Water Planning and Risk Management, Technical Session 31). CONAMA2020 proceedings, Madrid, Spain. 2020. Available online: http://www.conama.org/conama/download/files/conama2020/STs%202020/5505_ppt_VArqued.pdf (accessed on 13 July 2023).
- Fernández Escalante, E.; Gil, R.C.; San Miguel Fraile, M.Á.; Serrano, F.S. Economic Assessment of Opportunities for Managed Aquifer Recharge Techniques in Spain Using an Advanced Geographic Information System (GIS). Water 2014, 6, 2021–2040. [Google Scholar] [CrossRef] [Green Version]
- MAPAMA. Gestión de la Recarga de Acuíferos: Su Implicación en la Lucha Contra la Desertificación. Tipologías y Dispositivos de Recarga Artificial; MAPAMA: Madrid, Spain, 2008. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/desertificacion-restauracion/0904712280144db8_tcm30-152640.pdf (accessed on 13 July 2023).
- IGME. Identificación de Acciones y Programación de Actividades de Recarga Artificial de Acuíferos en las Cuencas Intercomunitarias; Sahún, B., Mudillo, J.M., Eds.; IGME: Madrid, Spain, 2000. [Google Scholar]
- MIMAM. Libro Blanco del Agua en España (White Book of the Water in Spain); MITECO: Madrid, Spain, 2000; ISBN 84-8320-219-0. Available online: https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/water-in-spain_tcm30-527170.pdf (accessed on 13 July 2023).
- MITECO. Libro Digital del Agua (Water´s Digital Book); MITECO: Madrid, Spain, 2020; Available online: https://www.miteco.gob.es/eu/agua/temas/planificacion-hidrologica/sia-/infolibrodigital.aspx (accessed on 13 July 2023).
- MAPAMA. Large Dams Inventory. Viewer with Diverse Thematic Coverages; MITECO: Madrid, Spain. Available online: https://sig.mapama.gob.es/geoportal/index.html?services=60005&herramienta=ServiceTree&dir=Agua|Inventario%20de%20Presas%20y%20Embalses (accessed on 13 July 2023).
- MITECO. Inventario de Grandes Presas y Embalses de España (Spain´s Dams Inventory); MITECO: Madrid, Spain, 2018; Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/inventario-presas-embalses.aspx (accessed on 13 July 2023).
- MITECO. Inventario de Barreras Transversales de España (Spain´s Transverse Obstacles Inventory); MITECO: Madrid, Spain, 2020; Available online: https://www.miteco.es/app/descargas/descargafichero.aspx?f=iot.zip (accessed on 13 July 2023).
- MITECO. Análisis de Resultados de la Caracterización de Estructuras Transversales Potenciales Para el Paso de Fauna Identificadas en un Muestreo en Infraestructuras Lineales de Transporte de España, Año 2018 (Analysis of the Results of the Characterisation of Potential Transverse Structures for the Passage of Wildlife Identified in a Sampling of Linear Transport Infrastructures in Spain, Year 2018). Ed. SILCO, Estadística y Aplicaciones Ambientales SL; Madrid, Spain. 2018. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/estruct_poten_fauna_tcm30-485847.pdf (accessed on 13 July 2023).
- MITERD. Public Thematic Coverages for Spain. 2022. Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/default.aspx (accessed on 13 July 2023).
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga Téllez, F.; Standen, K.; Costa, L.; Monteiro, J.P.; Vlassopoulou, A.; Kallioras, A.; Caligaris, E.; Rossetto, R.; et al. Report on the Performance of Optimal MAR Designs; MARSOLut: Darmstadt, Germany, 2023. [Google Scholar]
- MITECO. La Corrección de Cauces Torrenciales: Obras Transversales y Longitudinales (Correction of Torrential Watercourses: Transverse and Longitudinal Works); MAPAMA: Madrid, Spain, 2021. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/desertificacion-restauracion/restauracion-hidrologico-forestal/rhf_caracteristicas_correcion_cauces.aspx (accessed on 13 July 2023).
- Fernández Escalante, E. Passive and Intermittent Systems as an Adaptation Mechanism to Climate Change. Examples. Legal Framework. Third Lecture of the Short Course on Managed Aquifer Recharge Systems and Water Harvesting Techniques. MAYA Project. University of Sassari, Sassari, Italy. 2018. Available online: https://youtu.be/vRxHFDNvGDs (accessed on 13 July 2023).
- Nicolás Rodríguez, J. Restauración hidrológico-forestal de la cuenca del torrente de Arás. Grupo TRAGSA-TRAGSATEC, Madrid, Spain. Tragsa Group-Tragsatec 2001, 221. DL. M-39692-2001. [Google Scholar]
- MITECO. Plan Nacional de Actuaciones Prioritarias en Materia de Restauración Hidrológico-Forestal, Control de la Erosión y Defensa Contra la Desertificación; MITECO: Madrid, Spain, 2022; Available online: https://www.miteco.gob.es/es/biodiversidad/temas/desertificacion-restauracion/restauracion-hidrologico-forestal/rhf_plan_restauracion.aspx (accessed on 13 July 2023).
- Closas, A.; Molle, F. Groundwater Governance in the Arab World—Taking Stock and Addressing the Challenges. IWMI Project Report 1. 2016. Available online: https://www.iwmi.cgiar.org/archive/wle/project/groundwater-governance-arab-world-taking-stock-and-addressing-challenges/index.html (accessed on 13 July 2023).
- Mintegui, J.A.; Fábregas, S.; Robredo, J.C.; Huelin, P. Evaluación de los Efectos de la Restauración Hidrológico-Forestal en la Atenuación de los Riesgos Naturales en las Cuencas de Montaña: Aplicación en el Pirineo Aragonés. Lucas Mallada No. 18, Artículos, 2016, pp. 311–378, ISSN-e 2445-060X. Available online: http://revistas.iea.es/index.php/LUMALL (accessed on 13 July 2023).
- Fernández Escalante, A.E.; Calero Gil, R.; Villanueva Lago, M.; San Sebastian Sauto, J. Managed Aquifer Recharge to Combat Groundwater Overexploitation at the Los Arenales Site, Castilla y León, Spain. MARSOL Deliverable 5.4., Madrid, Spain. 2016. Available online: http://marsol.eu/35-0-Results.html (accessed on 13 July 2023).
- Fernández Escalante, E. MAR as a Climate Change Adaptation Mechanism, and MAR in Semiarid and Arid Areas. Second Lecture of the Short Course on Managed Aquifer Recharge Systems and Water Harvesting Techniques. MAYA Project. University of Sassari, Sassari, Italy. 2018. Available online: https://youtu.be/nSX5d2CBNw8 (accessed on 13 July 2023).
- MITECO. Realización de un Inventario de Obras de Defensa Frente a Inundaciones, Impacto Sobre Hidromorfología y Análisis de Impacto del Cambio Climático (Inventory of Flood Defence Works, Impact on Hydromorphology and Climate Change Impact Analysis); MITECO: Madrid, Spain, 2021; Available online: https://www.miteco.gob.es/ca/agua/temas/delimitacion-y-restauracion-del-dominio-publico-hidraulico/estrategia-nacional-restauracion-rios/Plan-PIMA-ADAPTA-inventario-obras-defensa-inundaciones.aspx (accessed on 13 July 2023).
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- González-Hidalgo, J.; Brunetti, M.; de Luis, M. Precipitation trends in Spanish hydrological divisions, 1946–2005. Clim. Res. 2010, 43, 215–228. [Google Scholar] [CrossRef]
- MAPAMA. Geoportal MAPAMA. 2020. Available online: https://sig.mapama.gob.es/geoportal/ (accessed on 13 July 2023).
- MAPAMA. Manual for the Identification of Pressures and Impact Analysis in Surface Water; Chapter 2; MAPAMA: Madrid, Spain, 2020. Available online: https://www.miteco.gob.es/es/agua/publicaciones/impress_tcm30-214065.pdf (accessed on 13 July 2023).
- Tragsatec. Modelo de Datos, Inventario y Almacenamiento de la Información Contenida en el Inventario de Barreras Transversales y de Obras Longitudinales de Defensa (Data Model, Inventory and Storage of Information contained in the Inventory of Transverse Barriers and Longitudinal Defence Works); Technical Report; Tragsatec: Madrid, Spain, 2022. [Google Scholar]
- CEDEX. Evaluación de Recursos Hídricos en Régimen Natural en España, 1940/41–2017/18. (Assessment of Natural Water Resources in Spain, 1940/41–2017/18); CEDEX: Madrid, Spain, 2020; Available online: https://www.miteco.gob.es/es/agua/temas/evaluacion-de-los-recursos-hidricos/cedex-informeerh2019_tcm30-518171.pdf (accessed on 13 July 2023).
- BOE. Real Decreto 1444/1981, de 22 de Mayo, Sobre Actuación de los Institutos Nacionales de Reforma y Desarrollo Agrario (IRYDA) y Para la Conservación de la Naturaleza (ICONA) en los Programas Extraordinarios del Gobierno Para Combatir el Desempleo Agrario (Action by the National Institutes for Agrarian Reform and Development (IRYDA) and for Nature Conservation (ICONA) in the Government’s Extraordinary Programmes to Combat Agricultural Unemployment). BOE-A-1981-16139. 1981. Available online: https://vlex.es/vid/institutos-iryda-conservacion-icona-254471858 (accessed on 13 July 2023).
- CEDEX. Encomienda de Gestión al CEDEX Para la Realización de Trabajos de Asistencia Técnica de la Dirección General de calidad y Evaluación Ambiental y Medio Natural (2014–2016). Actuación No. 8: Actividades de Preparación: Recopilación de Información, Definición del Modelo de Datos y Selección de las Cuadrículas UTM a Muestrear. Informe A8T1, No. 51-414-5-002, Madrid, Spain. 2014. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/modelo-datos-estructuras-conectividad_tcm30-195883.pdf (accessed on 13 July 2023).
- MITERD. Inventario de Obras Longitudinales de Protección Frente a Inundaciones. Memoria. (Longitudinal Defence Construction Inventory. Memory); Geoportal viewer; Ministerio de la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022. Available online: https://sig.mapama.gob.es/Docs/PDFServicios/ZI_IOL.pdf (accessed on 13 July 2023).
- MITERD. Acceso al Inventario de Obras Longitudinales de Protección Frente a Inundaciones (Longitudinal Defence Construction Inventory Access); Ministerio de la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022. Available online: https://www.miteco.gob.es/es/agua/temas/gestion-de-los-riesgos-de-inundacion/planes-gestion-riesgos-inundacion/Acceso-Inventario-obras-de-proteccion-frente-a-inundaciones.aspx (accessed on 13 July 2023).
- IGME. Mapa Litoestratigráfico de España a Escala 1/200,000. (Lithostratigraphycal Map of Spain, Scale 1:200,000); IGME: Madrid, Spain, 2021; Available online: https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=3dc3fcb142594d6e821c5f645b16ffa1#! (accessed on 13 July 2023).
- IGME. Mapa de Permeabilidades de España (Permeability Map of Spain); IGME: Madrid, Spain, 2010; Available online: https://catalogo.igme.es/geonetwork/srv/spa/catalog.search#/metadata/espigmepermeabilidades200continuodigital20100805637842 (accessed on 13 July 2023).
- Tragsa. Hidrogeoportal DINA-MAR (DINA-MAR Hydro-Geoportal); Tragsa: Madrid, Spain, 2020; Available online: https://sjc-arcgis.tragsatec.es/portal/apps/webappviewer/index.html?id=d43af99e5b0e4ca8b89a8bc41902545d (accessed on 13 July 2023).
- Tragsa. Visor Hidrogeoportal DINA-MAR. Manual de Usuario (Hydrogeoportal DINA-MAR, User´s Manual); Tragsa: Madrid, Spain, 2020; Available online: https://dinamar.tragsa.es/file.axd?file=/PDFS/Visor%20Hidrogeoportal-manual%20de%20usuario.pdf (accessed on 13 July 2023).
- MITERD. Sistema Nacional de Zonas Inundables, (National Flood Zone Mapping System, General Cartography), (SNCZI-IPE). 2022. Available online: https://sig.mapama.gob.es/snczi/index.html?herramienta=Presas (accessed on 13 July 2023).
- Mozzi, G.; Pavelic, P.; Alam, M.F.; Stefan, C.; Villholth, K.G. Hydrologic Assessment of Check Dam Performances in Semiarid Areas: A Case Study from Gujarat, India. Front. Water 2021, 3, 628955. [Google Scholar] [CrossRef]
- IGN. Plan Nacional de Ortofotografía Aérea. Plan Nacional de Observación del Territorio (PNOA-IGN MDT 1 m), (National Aerial Orthophotography Plan. National Plan for Territory Observation, PNOA-IGN DTM 1 m). 2021. Available online: https://pnoa.ign.es/web/portal/pnoa-lidar/tercera-cobertura (accessed on 13 July 2023).
- Terzaghi, K.; Peck, R.B. Technology & Engineering; John Wiley & Sons: New York, NY, USA, 1967; 752p. [Google Scholar]
- Bendixen, T.W.; Hershbergeb, M.F.; Slater, S. A basis for classifying soil permeabilities. J. Agric. Res. 1944, 77, 157–168. [Google Scholar]
- Bouwer, H.; Rice, R.C. Effect of water depth in groundwater recharge basins on infiltration. J. Irrig. Drain. Eng. 1989, 115, 556–567. [Google Scholar] [CrossRef]
- Chapuis, R.P.; Gill, D.E. Hydraulic anisotropy of homogeneous soils and rocks: Influence of the densification process. Bull. Eng. Geol. Environ. 1989, 39, 75–86. [Google Scholar] [CrossRef]
- Sridhar, G.; Robinson, R.G.; Karpurapu, R. Horizontal Coefficient of Consolidation from Inward and Outward Flow Tests. Proc. Inst. Civ. Eng. Ground Improv. 2017, 171, 159–166. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Bouwer, H. Theory of seepage from open channels. Adv. Hydrosci. 1969, 5, 121–172. [Google Scholar] [CrossRef]
- Fernández Escalante, E. Practical Management to Minimise the Effects of Clogging in Managed Aquifer Recharge Wells at Two Sites in the Guadiana Basin, Spain. J. Hydrol. Eng. 2015, 20, B5014002. [Google Scholar] [CrossRef]
- Fernández Escalante, E.; Henao Casas, J.D.; San Sebastián Sauto, J.; Calero Gil, R. Monitored and Intentional Recharge (MIR) A Model for Managed Aquifer Recharge (MAR) Guideline and Regulation Formulation. Water 2022, 14, 3405. [Google Scholar] [CrossRef]
- MITERD. Plan Nacional de Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización—Plan DSEAR (National Plan for Purification, Sanitation, Efficiency, Savings and Reuse—DSEAR Plan); Ministerio de la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2021. Available online: https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/planificacion-hidrologica/plan_dsear_final_tcm30-529674.pdf (accessed on 13 July 2023).
- Versteeg, P.; Peña, K.; Gallegos, J.; Fernández-Escalante, E. Urban Waterbuffer Zorrilla, Valladolid. Pilot Project for Managed Aquifer Recharge and Rainwater Recovery for Irrigation. Field Factors Report. 2021. Available online: https://www.fieldfactors.com/case-studies/urban-waterbuffer-zorrilla-stadium-in-valladolid-spain (accessed on 13 July 2023).
- Martín-Rosales, W.; Gisbert, J.; Pulido-Bosch, A.; Vallejos, A.; Fernández-Cortés, A. Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ. Geol. 2007, 52, 985–995. [Google Scholar] [CrossRef]
- SIKB. Ontwerp, Realisatie en Beheer van het Ondergrondse Deel van Bodemenergiesystemen. Dutch Protocol 11001. 2014. Available online: https://www.sikb.nl/doc/BRL11000/Protocol_11001_v_2_0_20141002.pdf (accessed on 13 July 2023).
- Schippers, J.C.; Verdouw, J. The modified fouling index, a method of determining the fouling characteristics of water. Desalination 1980, 32, 137–148. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Marchant, B.P. Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, J.; Brauns, B.; Hannah, D.M.; Jackson, C.; Marchant, B.; Van Loon, A.F. The Groundwater Drought Initiative (GDI): Analysing and understanding groundwater drought across Europe. Proc. IAHS 2020, 383, 297–305. [Google Scholar] [CrossRef]
- Spanish Groundwater Action Plan. Available online: https://www.miteco.gob.es/es/agua/participacion-publica/Plan_Accion_Aguas_Subterraneas_2023_2030.aspx (accessed on 13 July 2023).
- MARSOLUT Project Web Site. Available online: Marsolut-itn.eu (accessed on 13 July 2023).
- IAH. Commission on Managing Aquifer Recharge. International Association of Hydrogeologists. Available online: https://recharge.iah.org (accessed on 13 July 2023).
Theme | Number of Inventoried Structures | Website |
---|---|---|
Large and medium size dams inventory | 1773 | https://sig.mapama.gob.es/snczi/index.html?herramienta=Presas. Accessed on 13 July 2023. |
Dykes and small dams (either longitudinal or transverse) | 42,323 | https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/inventario-presas-embalses.aspx. Accessed on 13 July 2023. |
Transverse structures | 27,680 | https://www.miteco.es/app/descargas/descargafichero.aspx?f=iot.zip. Accessed on 13 July 2023. |
Longitudinal structures | 14,643 | https://www.miteco.gob.es/es/agua/temas/gestion-de-los-riesgos-de-inundacion/planes-gestion-riesgos-inundacion/Acceso-Inventario-obras-de-proteccion-frente-a-inundaciones.aspx. Accessed on 13 July 2023. |
MITERD’s geoportal | - (Viewer) | https://sig.mapama.gob.es/geoportal/. Accessed on 13 July 2023. |
Category | K (m/day) |
---|---|
Very low | 0.02 |
Low | 0.07 |
Medium | 1.02 |
High | 4.5 |
Very high | 6 |
Code | Description |
---|---|
AutoUID | Alphanumeric identifier code. |
ID_CLAVE | Code based on the type of structure and water body. |
CODMAS | Code of the surface water body. |
TRAMO_COD | Code of the hydromorphological section. |
NOM_CCAA | Spanish autonomous Community where the structure is located. |
NOM_PROV | Spanish province where the structure is located. |
NOM_MUNICI | Spanish municipality where the structure is located. |
NOM_RIO | River in which the structure is built. |
DEMARCACIO | Major river basin where the structure is located. |
TIPO_INFR | Type of transverse structure. |
CIERTO | Degree of certainty in the type of transverse structure assigned. |
REVISIONES | Specifies whether a structure was visited in the field. |
FECHA REVISION | Date on which the structure was visited. |
CORD_X | X coordinate in ETRS89. |
CORD_Y | Y coordinate in ETRS89. |
ORIGEN | Specify the origin of the information. |
BBDD_CONF | Specifies whether it was present in previous databases. |
MOD_IMPRESS | Specifies whether the structure information is included or matches the information of the IMPRESS document [27]. |
Code | Description |
---|---|
USO_P | Main use of the structure |
AÑO_CONST | Year in which the structure was built |
Code | Description |
---|---|
H_TOTAL | Total height of the construction site, from crest to foundation. |
H_SALTO | Height of the fall from the sheet of water to its crest. It may coincide with the total height of the obstacle, depending on the flow conditions. |
PROF_POZA | Depth of the rising pool at the foot of the obstacle. |
LONG_COR | Length of the infrastructure at the crest. |
ANCHO_COR | Width of infrastructure at the crest. |
H_AGUA_COR | Water depth on the crest. |
V_ AGUA | Water velocity at the crest, inside pipe or canal, depending on obstacle. |
H_ AGUA_TUB | Water draught in passage pipe. |
PENDIENTE | The slope of the facing (%). |
H_ AGUA _PAR | Water draught on facing. |
DIST_COR | Distance from the foot of the construction site to the crown of the crest. |
LONG_REM | Length of the impoundment created by the structure. |
ANCH_REM | Width of the impoundment created by the structure. |
PROF_REM | Depth of impoundment created by the structure. |
ANCHO_PREM | Average width of the channel before the impoundment created by the structure. |
PROF_PREM | Mean channel draught before the impoundment created by the structure. |
“COLMATACION” | Specifies whether there is clogging. |
EXIS_PASO | Indicates if the structure has a fish ladder (yes/no) or a lateral diversion. |
Permeability Category | Number of Structures in the Category |
---|---|
Very low | 1167 |
Low | 11,666 |
Medium | 3113 |
High | 7265 |
Very high | 4469 |
Lithology | Number of Transverse Structures | Anisotropy Coefficient (Kv/Kh) | Clogging Correction Factor (Ccf) |
---|---|---|---|
Granular | 3004 | 0.1 | 0.75 |
Karstic | 2134 | 1 | 0.80 |
Alluvial | 16,139 | 0.01 | 0.65 |
Metamorphic | 4014 | 0.0001 | 0.30 |
Volcanic | 23 | 0.01 | 0.50 |
Evaporitic | 25 | 0.5 | 0.60 |
Intrusive | 2341 | 0.01 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escalante, E.F.; Casas, J.D.H.; Per, C.M.d.G.; Vera, M.D.M.; Valverde, C.M. Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume. Earth 2023, 4, 584-605. https://doi.org/10.3390/earth4030031
Escalante EF, Casas JDH, Per CMdG, Vera MDM, Valverde CM. Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume. Earth. 2023; 4(3):584-605. https://doi.org/10.3390/earth4030031
Chicago/Turabian StyleEscalante, Enrique Fernández, José David Henao Casas, Carlos Moreno de Guerra Per, María Dolores Maza Vera, and Carles Moreno Valverde. 2023. "Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume" Earth 4, no. 3: 584-605. https://doi.org/10.3390/earth4030031