A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation for Gamma Spectrometry
2.3. Sediment Sampling and Laboratory Preparations
2.4. Water Sampling and Laboratory Preparations
2.5. Fish Sampling and Laboratory Preparations
2.6. Gamma Spectrometric Analysis
2.7. Determination of Activity Levels, Concentration Factor, and Annual Effective Dose
3. Results
3.1. Activity Concentrations in Sediment
3.2. Activity Concentrations in Water
3.3. Activity Concentrations in Fish
3.4. Activity Concentrations (Bq/kg) Per Location
3.5. Radionuclide Transfer from the Fish Environment to Fish
3.6. Annual Effective Dose (AED)
4. Discussion
4.1. Activity Concentrations in Sediment
4.2. Activity Concentrations in Water
4.3. Activity Concentrations in Fish
4.4. Comparisons of Activity Concentrations Levels in Different Water Bodies
4.5. Radionuclides Transfer from Fish Environment to Fish
4.6. Annual Effective Dose (AED)
5. Conclusion and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguko, O.W.; Kinyua, R.; Githiri, J.G. Natural Radioactivity and Excess Lifetime Cancer Risk Associated with Soil in Kargi Area, Marsabit-Kenya. J. Geosci. Environ. Prot. 2020, 8, 127–143. [Google Scholar] [CrossRef]
- Fasae, K.P.; Isinkaye, M.O. Radiological risks assessment of 238 U, 232 Th and 40 K in fish feeds and catfish samples from selected fish farms in Ado–Ekiti, Nigeria. J. Radiat. Res. Appl. Sci. 2018, 11, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Singh, G.; Jha, V.N.; Tripathi, R.M. Natural radionuclides in fish species from surface water of Bagjata and Banduhurang uranium mining areas, East Singhbhum, Jharkhand, India. Int. J. Radiat. Biol. 2010, 86, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Sowole, O.; Egunjobi, K. Radioactivity Assessment of 40K, 238U and 232Th in Surface Soil Samples of Igbokoda, Southwest of Nigeria. Tanzan. J. Sci. 2019, 45, 307–314. Available online: https://0-search.ebscohost.com.ujlink.uj.ac.za/login.aspx?direct=true&db=awn&AN=tjs-191170&site=ehost-live&scope=site (accessed on 1 September 2021).
- Aniebone, A.; Chukwu-Okeah, V.O.; Adegbie, G.O. Radionuclide Actions, Processes and Presence in Water and Sediments, a Review. Int. J. Gr. Sediment Water 2020, 10, 559–571. [Google Scholar] [CrossRef]
- Billa, J.; Han, F.; Didla, S.; Yu, H.; Dimpah, J.; Brempong, O.; Adzanu, S. Radioactivity Studies on Farm Raised and Wild Catfish Produced in Mississippi, USA; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Mlwilo, N.A.; Mohammed, N.K.; Spyrou, N.M. Radioactivity levels of staple foodstuffs and dose estimates for most of the Tanzanian population. J. Radiol. Prot. 2007, 27, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Kimaro, E.; Mohammed, N. Natural Radioactivity Levels in the Area around the Uranium Deposit of the Bahi District in Dodoma Region, Tanzania. Int. Res. J. Pure Appl. Chem. 2015, 9, 1–10. [Google Scholar] [CrossRef]
- Nyanda, P.; Nkuba, L. Natural Radioactivity in Vegetables from Selected Areas of Manyoni District in Central Tanzania. Phys. Sci. Int. J. 2017, 16, 1–10. [Google Scholar] [CrossRef]
- Hamidalddin, S.H.Q.; AlZahrani, J.H. An assessment of Some Toxic, Essential Elements and Natural Radioactivity, in Most Common Fish Consumed in Jeddah-Saudi Arabia. Food Nutr. Sci. 2016, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Kaishwa, S.J.; Marwa, E.M.; Msaky, J.J.; Mwakalasya, W.N. Uranium natural levels in soil, rock and water: Assessment of the quality of drinking water in Singida Urban District, Tanzania. J. Water Health 2018, 16, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Ademola, J.A.; Ehiedu, S.I. Radiological Analysis of 40 K, 226 Ra and 232 Th in Fish, Crustacean and Sediment Samples from Fresh and Marine Water in Oil Exploration Area of Ondo State, Nigeria. Afr. J. Biomed. Res. 2010, 13, 99–106. [Google Scholar]
- Ravisankar, R.; Chandramohan, J.; Chandrasekaran, A.; Jebakumar, J.P.P.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar. Pollut. Bull. 2015, 97, 419–430. [Google Scholar] [CrossRef] [PubMed]
- di Kampung Gajah, L.; Saat, A.; Isak, N.M.; Hamzah, Z.; Wood, A.K. Study of radionuclides linkages between fish, water and sediment in former tin mining lake in Kampung Gajah. Malsysian J. Anal. Sci. 2014, 18, 170–177. [Google Scholar]
- Matamoros, V. Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar]
- Measurement of Radionuclides in Food and the Environment; IAEA Technical Report Series no 295; International Atomic Energy Agency: Vienna, Ausria, 1989.
- Michael, O.M.; Adewale, A.A.; Cornelius, A.F.; Charles, A.E.; Simon, I.O.; Mark, I.B.; Gbenga, M.; Debo, A.G.; Victoria, O.O.; John, A.O. Measurement of Natural Radionuclides Concentration and Radiological Impact Assessment of Fish Samples from Dadin Kowa Dam, Gombe State Nigeria. Afr. J. Med. Phys. 2018, 1, 1–35. [Google Scholar]
- ICRP. Annals of the ICRP; ICR Public: Boston, MA, USA, 2007. [Google Scholar]
- Igwe, J.C.; Nnorom, I.C.; Gbaruko, B.C. Kinetics of radionuclides and heavy metals behaviour in soils: Implications for plant growth. Afr. J. Biotechnol. 2005, 4, 1541–1547. [Google Scholar] [CrossRef]
- Van, H.D.; Nguyen, T.D.; Peka, A.; Hegedus, M.; Csordas, A.; Kovacs, T. Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J. Environ. Radioact. 2020, 223–224, 106416. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; UN: New York, NY, USA, 2000; Volume 1. [Google Scholar]
- Bailey, H.; Ragnarsdottir, K.V. Uranium and Thorium Solubilities in Subduction Zone Fluids; Elsevier: Amsterdam, The Netherlands, 1994; Volume 124, pp. 119–129. [Google Scholar]
- Makundi, I.N.; Nyaki, M.M.; Mohammed, N.K.; Commision, E. Assessment of radioactivity levels in coal and coal. Tanzan. J. Sci. 2018, 44, 1–11. [Google Scholar]
Water Body | Sample ID | 226Ra | 228Ra | 40K |
---|---|---|---|---|
Lake Kindai | SK1 | 89.43 ± 8.32 | 133.52 ± 12.63 | 539.18 ± 50.17 |
SK2 | 75.06 ± 7.53 | 95.44 ± 9.34 | 504.04 ± 50.30 | |
SK3 | 92.57 ± 8.86 | 108.94 ± 10.35 | 493.53 ± 47.43 | |
SK4 | 79.37 ± 7.85 | 112.96 ± 10.88 | 502.66 ± 49.91 | |
SK5 | 63.34 ± 6.00 | 75.25 ± 7.05 | 322.41 ± 33.35 | |
Mean ± SEM | 79.95 ± 0.04 | 105.22 ± 0.08 | 472.36 ± 0.31 | |
Lake Munang | SM1 | 95.67 ± 9.32 | 81.63 ± 8.01 | 393.16 ± 40.00 |
SM2 | 135.55 ± 13.20 | 112.41 ± 11.50 | 432.44 ± 45.18 | |
SM3 | 114.83 ± 10.65 | 111.75 ± 10.37 | 432.54 ± 43.16 | |
SM4 | 137.34 ± 13.08 | 99.21 ± 9.89 | 372.15 ± 39.55 | |
SM5 | 88.41 ± 8.29 | 122.43 ± 11.52 | 540.53 ± 50.95 | |
Mean ± SEM | 87.96 ± 0.07 | 105.48 ± 0.06 | 434.16 ± 0.24 | |
Ponds | SP1 | 36.28 ± 3.67 | 73.51 ± 8.27 | 947.06 ± 88.49 |
SP2 | 76.12 ± 6.97 | 99.56 ± 9.39 | 273.68 ± 26.47 | |
SP3 | 56.65 ± 5.48 | 95.40 ± 9.17 | 411.46 ± 39.24 | |
SP4 | 28.77 ± 3.02 | 43.06 ± 4.49 | 225.76 ± 23.04 | |
SP5 | 22.68 ± 2.50 | 29.50 ± 3.63 | 847.49 ± 81.76 | |
Mean ± SEM | 44.1 ± 0.07 | 68.20 ± 0.10 | 541.09 ± 1.04 | |
Lake Singidani | SS1 | 88.57 ± 8.54 | 99.68 ± 10.04 | 523.31 ± 50.98 |
SS2 | 103.97 ± 9.69 | 122.98 ± 11.37 | 545.96 ± 53.15 | |
SS3 | 108.36 ± 10.21 | 126.75 ± 11.71 | 582.03 ± 55.84 | |
SS4 | 142.83 ± 13.60 | 122.72 ± 11.91 | 626.47 ± 62.18 | |
SS5 | 124.80 ± 11.94 | 111.23 ± 10.84 | 594.80 ± 59.36 | |
Mean ± SEM | 113.42 ± 0.10 | 116.74 ±0.09 | 574.91 ± 0.40 | |
Overall mean ± SEM | 88.05 ± 4.41 | 98.91 ± 3.43 | 505.63 ± 21.79 | |
Overall min–max | (22.57–143.54) | (29.35–134.19) | (224.63–951.8) | |
World average (UNSCEAR) | 35 | 30 | 400 |
Water Body | Sample ID | 226Ra | 228Ra | 40K |
---|---|---|---|---|
Lake Kindai | WK1 | BDL | BDL | 2.60 ± 0.07 |
WK2 | BDL | BDL | BDL | |
WK3 | BDL | BDL | 3.14 ± 0.09 | |
WK4 | 0.64 ± 0.01 | BDL | 6.19 ± 0.17 | |
WK5 | BDL | BDL | 2.97 ± 0.09 | |
Mean ± SEM | 0.64 ± 0.01 | - | 3.13 ± 0.87 | |
Lake Munang | WM1 | BDL | BDL | BDL |
WM2 | BDL | BDL | BDL | |
WM3 | BDL | BDL | 3.23 ± 2.20 | |
WM4 | BDL | BDL | 5.05 ± 2.74 | |
WM5 | 1.02 ± 0.02 | BDL | BDL | |
Mean ± SEM | 1.02± 0.02 | - | 3.67 ± 1.41 | |
Ponds | WP1 | 0.43 ± 0.01 | BDL | 5.40 ± 0.15 |
WP2 | BDL | BDL | 3.18 ± 0.09 | |
WP3 | 0.43 ± 0.012 | BDL | 5.40 ± 0.15 | |
WP4 | 0.64 ± 0.02 | BDL | 5.71 ± 0.16 | |
WP5 | 1.34 ± 0.03 | BDL | 6.31 ± 0.18 | |
Mean ± SEM | 0.58 ± 0.20 | - | 5.20 ± 0.53 | |
Lake Singidani | WS1 | BDL | BDL | BDL |
WS2 | BDL | BDL | BDL | |
WS3 | BDL | BDL | BDL | |
WS4 | BDL | BDL | BDL | |
WS5 | BDL | BDL | BDL | |
Mean ± SEM | - | - | - | |
Overall Mean ± SEM | 0.31 ± 0.04 | - | 3.25 ± 0.30 | |
Min–Max | BDL–1.41 | BDL | BDL–8.3 |
Water Body | Type of Fish | Sample ID | 226Ra | 228Ra | 40K |
---|---|---|---|---|---|
Lake Kindai | Nile tilapia | TK | 11.23 ± 0.32 | BDL | 540.61 ± 15.60 |
Lake Munang | TM | BDL | BDL | 597.92 ± 17.26 | |
Lake Singidani | TS | 4.56 ± 1.33 | BDL | 504.60 ± 50.46 | |
Ponds | TP1 | BDL | BDL | 693.87 ± 20.00 | |
TP2 | 5.65 ± 0.16 | BDL | 547.39 ± 15.80 | ||
TP3 | 14 ± 0.40 | BDL | 805.51 ± 23.25 | ||
TP4 | BDL | BDL | 745.17 ± 21.51 | ||
TP5 | 5.89 ± 0.17 | BDL | 665.05 ± 19.19 | ||
Mean ± SEM | 8.51 ± 0.12 | - | 691.39 ± 3.72 | ||
Overall Mean ± SEM | 5.49 ± 0.96 | - | 637.51 ± 21.62 | ||
Min–Max | 0.71–14.70 | - | 479.37–845.79 | ||
Lake Singidani | Manyara tilapia | TS0 | 4.97 ± 0.14 | BDL | 349.00 ± 10.07 |
Lake Kindai | TK0 | 5.38 ± 0.15 | BDL | 381.81 ± 11.02 | |
Lake Munang | TM0 | 7.61 ± 0.21 | BDL | 325.88 ± 9.40 | |
Overall Mean ± SEM | 5.98 ± 0.41 | - | 352.23 ± 9.58 | ||
Min–Max | 4.72–7.99 | - | 309.90–352.23 |
Transfer of Radionuclides from Water to Fish | Transfer of Radionuclides Sediment to Fish | |||||
---|---|---|---|---|---|---|
Sample | 226Ra | 228Ra | 40K | 226Ra | 228Ra | 40 K |
Manyara tilapia | 19.46 | 3.09 | 108.39 | 0.03 | 0.01 | 0.70 |
Nile tilapia | 17.87 | 4.57 | 196.17 | 0.06 | 0.02 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazoka, A.R.; Mwalilino, J.; Mtoni, P. A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania. Earth 2023, 4, 540-551. https://doi.org/10.3390/earth4030028
Kazoka AR, Mwalilino J, Mtoni P. A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania. Earth. 2023; 4(3):540-551. https://doi.org/10.3390/earth4030028
Chicago/Turabian StyleKazoka, Amin R., Jilisa Mwalilino, and Paul Mtoni. 2023. "A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania" Earth 4, no. 3: 540-551. https://doi.org/10.3390/earth4030028
APA StyleKazoka, A. R., Mwalilino, J., & Mtoni, P. (2023). A Radiological Risk Assessment of 226Ra, 228Ra and 40K Isotopes in Tilapia Fish and its Granitic Environment in Singida Municipality, Tanzania. Earth, 4(3), 540-551. https://doi.org/10.3390/earth4030028