The Use of the DRASTIC-LU/LC Model for Assessing Groundwater Vulnerability to Nitrate Contamination in Morogoro Municipality, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.1.1. Location
2.1.2. Climate
2.1.3. Hydrology
2.1.4. Geology and Hydrogeology
2.2. Mapping of DRASTIC-LU/LC Parameters
2.2.1. Depth to the Water Table
2.2.2. Net Recharge
2.2.3. Aquifer Media
2.2.4. Soil Media
2.2.5. Topography
2.2.6. Impact of the Vadose Zone
2.2.7. Hydraulic Conductivity
2.2.8. Land Use/Land Cover
2.2.9. DRASTIC-LU/LC Index Map
2.3. Groundwater Sampling and Nitrate Analysis
3. Results and Discussion
3.1. DRASTIC-LU/LC Maps
3.1.1. Depth to Water Table
3.1.2. Net Aquifer Recharge
3.1.3. Aquifer Media
3.1.4. Soil Media
3.1.5. Topography
3.1.6. The Impact of the Vadose Zone
3.1.7. Hydraulic Conductivity
3.1.8. Land Use/Land Cover
Accuracy Assessment
3.2. Vulnerability Index Map
3.3. Nitrate Concentration in Groundwater
4. Model Validation Using Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poeter, E.; Ying, F.; John, C.; Warren, W.; Douglas, M. Groundwater in Our Water Cycle; Groundwater Project: Guelph, ON, Canada, 2020. [Google Scholar]
- Remesan, R.; Panda, R.K. Groundwater vulnerability assessment, risk mapping and nitrate evaluation in a small agricultural watershed: Using the DRASTIC model and GIS. Environ. Qual. Manag. 2008, 17, 53–75. [Google Scholar] [CrossRef]
- Kashaigili, J.J. Groundwater availabilty and use in Sub-Saharan Africa. In Groundwater Availability and Use in Sub-Saharan Africa: A Review of 15 Countries; Vidya, R., Tamma, R., Pavelic, P., Giordano, M., Keraita, B., Eds.; International Water Management Institute: Battaramulla, Sri Lanka, 2012; p. 195. Available online: http://www.iwmi.cgiar.org (accessed on 12 May 2022).
- Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- Plain, G.; Alam, F.; Umar, R.; Ahmed, S.; Dar, F.A. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab. J. Geosci. 2014, 7, 927–937. [Google Scholar] [CrossRef]
- Mjemah, I.C.; Mato, R.R.A.M.; Thunvik, R. Groundwater vulnerability to petroleum hydrocarbons pollution of quaternary sand aquifer in Dar es Salaam, Tanzania. J. Build. Land Dev. 2010, 17, 89–96. [Google Scholar]
- Adnan, S.; Iqbal, J.; Maltamo, M.; Valbuena, R. GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan. Arab. J. Geosci. 2018, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Thirumalaivasan, D.; Radhakrishnan, N. GIS Based Assessment of Groundwater Vulnerability Using Drastic Model. Arab. J. Sci. Eng. 2014, 39, 207–216. [Google Scholar] [CrossRef]
- Huan, H.; Wang, J.; Zhai, Y.; Xi, B.; Li, J.; Li, M. Quantitative evaluation of specific vulnerability to nitrate for groundwater resource protection based on process-based simulation model. Sci. Total Environ. 2016, 550, 768–784. [Google Scholar] [CrossRef]
- Lathamani, R.; Janardhana, M.R.; Mahalingam, B.; Suresha, S. Evaluation of Aquifer Vulnerability Using Drastic Model and GIS: A Case Study of Mysore City, Karnataka, India. Aquat. Procedia 2015, 4, 1031–1038. [Google Scholar] [CrossRef]
- Salustian, L.; Hans, C.; Jasper, N. Impact of human activities on groundwater vulnerability in hombolo catchment: Dodoma, Tanzania. Afr. J. Environ. Sci. Technol. 2017, 11, 609–621. [Google Scholar] [CrossRef]
- Elisante, E.; Muzuka, A.N.N. Occurrence of nitrate in Tanzanian groundwater aquifers: A review. Appl. Water Sci. 2017, 7, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Kibona, I.; Mkoma, S.L.; Mjemah, I.C. Nitrate Pollution of Neogene Alluvium Aquifer in Morogoro Municipality Tanzania. Int. J. Biol. Chem. Sci. 2011, 5, 171–179. [Google Scholar] [CrossRef]
- Obeidat, M.; Awawdeh, M.; Matiatos, I.; Al-Ajlouni, A.; Al-Mughaid, H. Identification and apportionment of nitrate sources in the phreatic aquifers in Northern Jordan using a dual isotope method (δ15N and δ18O of NO3−). Groundw. Sustain. Dev. 2020, 12, 100505. [Google Scholar] [CrossRef]
- Kumar, S.; Thirumalaivasan, D.; Radhakrishnan, N.; Mathew, S. Groundwater vulnerability assessment using SINTACS model. Geomat. Nat. Hazards Risk 2013, 4, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Mogaji, K.A. Application of vulnerability modeling techniques in groundwater resources management: A comparative study. Appl. Water Sci. 2018, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Barbulescu, A. Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: A review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Uhan, J.; Vižintin, G.; Pezdič, J. Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: Lower Savinja Valley case study (Slovenia). Environ. Earth Sci. 2011, 64, 97–105. [Google Scholar] [CrossRef]
- Panagopoulos, G. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Biodiversità, A.E. Groundwater Vulnerability Assessment Using Statistical Methods. Ph.D. Thesis, Alessandro Sorichetta Matricola R07615. 2010. [Google Scholar]
- Agyemang, A.B.A. Vulnerability Assessment of Groundwater to NO3 Contamination Using GIS, DRASTIC Model and Geostatistical Analysis. 2017. Available online: https://dc.etsu.edu/etd/3264/ (accessed on 12 May 2022).
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.H.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Setting. USEPA Report 600/2-87/035; Robert S. Kerr Environmental Research Laboratory: Ada, OK, USA, 1987; 252p. [Google Scholar]
- Mkonda, M. Vulnerability of Climate Change and Adaptation Strategies on Agriculture: The Case of Morogoro Municipalities, Tanzania. Glob. Adv. Res. J. Agric. Sci. 2017, 4, 725–734. [Google Scholar]
- Shagega, F.P.; Munishi, S.E.; Kongo, V.M. Prediction of future climate in Ngerengere river catchment, Tanzania Prediction of future climate in Ngerengere river catchment, Tanzania. Phys. Chem. Earth 2019, 112, 200–209. [Google Scholar] [CrossRef]
- Melchioly, S.R. Effects of Climate Changes on Water Resources: A Case of Mindu Dam in Morogoro Municipality, Tanzania. Tanzan. J. Sci. 2021, 47, 1252–1265. [Google Scholar] [CrossRef]
- Mussa, K.R.; Mjemah, I.C.; Machunda, R.L. Natural Groundwater Recharge Response to Climate Variability and Land Cover Change Perturbations in Basins with Contrasting Climate and Geology in Tanzania. Earth 2021, 2, 556–585. [Google Scholar] [CrossRef]
- Hamza, M.H.; Added, A.; Rodríguez, R.; Abdeljaoued, S.; Ben Mammou, A. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). J. Environ. Manag. 2007, 84, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Mubarak, S.; Islam, A.; Biswas, P. Comparative Evaluation of Various Empirical Methods for Estimating Groundwater Recharge. Arch. Curr. Res. Int. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Kumar, A.; Pramod Krishna, A. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int. 2020, 35, 1149–1178. [Google Scholar] [CrossRef]
- Thirumalaivasan, D.; Karmegam, M.; Venugopal, K. AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model. Softw. 2003, 18, 645–656. [Google Scholar] [CrossRef]
- Zafane, D.; Benyoucef Gharbi, A.D. Assessment of Groundwater Vulnerability by DRASTIC-LU, Khemis Miliana Plain (Algeria). In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Coppin, P.R.; Bauer, M.E. Digital Change Detection in Forest Ecosystems with Remote Sensing Imagery. Remote Sens. Rev. 1996, 13, 207–234. [Google Scholar] [CrossRef]
- Voutchkova, D.D.; Schullehner, J.; Rasmussen, P.; Hansen, B. A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). J. Environ. Manag. 2021, 277, 111330. [Google Scholar] [CrossRef]
Parameter | Parameter Ranges | Weight | Rating |
---|---|---|---|
DTWT (m) | 0.6–4.9 | 5 | 10 |
4.9–7.5 | 9 | ||
7.5–9.5 | 7 | ||
9.5–11.9 | 5 | ||
11.9–15.2 | 3 | ||
Net recharge | 157–198 | 4 | 5 |
(mm/y) | 198–228 | 6 | |
228–270 | 7 | ||
270–317 | 8 | ||
317–369 | 9 | ||
Aquifer media | Sand Alluvium Granulite | 3 | 8 6 3 |
Soil media | Loamy sand | 2 | 8 |
Silty clay | 3 | ||
Topography (%) | 0–2 | 1 | 10 |
2–6 | 9 | ||
6–12 | 5 | ||
12–18 | 3 | ||
>18 | 1 | ||
I. of vadose zone | Sand with clay | 5 | 4 |
Granitic gneiss | 6 | ||
Sand and gravel | 8 | ||
H. conductivity (m/day) | 0.1–0.8 | 3 | 1 |
0.8–1.4 | 4 | ||
1.4–2.1 | 6 | ||
2.1–3.0 | 8 | ||
3.0–4.3 | 10 | ||
LU/LC | Settlement | 5 | 10 |
Agriculture | 8 | ||
Water bodies | 5 | ||
Vegetation cover | 3 |
Class Value | Settlement | Agriculture | Vegetation | Water body | Bare land | Total | U_Accuracy | Kappa |
---|---|---|---|---|---|---|---|---|
Settlement | 18 | 0 | 0 | 0 | 2 | 20 | 0.9 | 0 |
Agriculture | 0 | 14 | 6 | 0 | 0 | 20 | 0.7 | 0 |
Vegetation | 0 | 0 | 20 | 0 | 0 | 20 | 1 | 0 |
Water body | 0 | 0 | 0 | 20 | 0 | 20 | 1 | 0 |
Bare land | 5 | 0 | 0 | 0 | 15 | 20 | 0.75 | 0 |
Total | 23 | 14 | 26 | 20 | 17 | 100 | 0 | 0 |
P-Accuracy | 0.78 | 1 | 0.77 | 1 | 0.88 | 0 | 0.87 | 0 |
Kappa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.84 |
Parameter | % Influence (AHP) | Rating | Index |
---|---|---|---|
DTWT | 25 | 10 9 7 5 | 250 225 175 125 |
Net recharge | 11 | 9 8 6 | 99 88 66 |
Aquifer media | 5 | 8 6 3 | 15 |
Soil media | 4 | 8 3 | 32 12 |
Topography | 3 | 10 9 5 3 1 | 30 27 15 9 3 |
I. Vadose zone | 21 | 8 6 | 168 126 |
Conductivity | 5 | 10 8 6 4 1 | 50 40 30 20 5 |
Land use | 26 | 10 8 5 3 1 | 260 208 130 78 26 |
S/No | Location | Status | Temp °C | pH | EC (μs/cm) | TDS (mg/L) | Nitrate mg/L | Land Use |
---|---|---|---|---|---|---|---|---|
S1 | Kingolwira | BH | 27.2 | 6.67 | 1850 | 1017.5 | 35.7 | settlement |
S2 | Kingolwira | SW | 28.2 | 7.26 | 1770 | 973.5 | 10 | agriculture |
S3 | Kingolwira | BH | 29.1 | 6.5 | 4500 | 2475 | 222.7 | settlement |
S4 | Bigwa | SW | 29.8 | 5.86 | 438 | 240.9 | 4.4 | agriculture |
S5 | Bigwa | BH | 29.6 | 7.16 | 890 | 489.5 | 6 | settlement |
S6 | Kilakala | BH | 32 | 6.91 | 1825 | 1003.75 | 12.7 | settlement |
S7 | Kilakala | SW | 31.9 | 6.53 | 1657 | 911.35 | 68.6 | settlement |
S8 | Kilakala | BH | 29.7 | 7.06 | 1440 | 792 | 20.9 | settlement |
S9 | Mwembesongo | SW | 27.1 | 8.7 | 2100 | 1155 | 47 | settlement |
S10 | Mwembesongo | SW | 29.9 | 9.4 | 1343 | 738.65 | 208.4 | settlement |
S11 | Mwembesongo | SW | 29.7 | 7.85 | 2270 | 1248.5 | 48.1 | settlement |
S12 | Kihonda | BH | 30.2 | 7.42 | 4250 | 2337.5 | 33.6 | settlement |
S13 | Kihonda | DW | 31.4 | 8.35 | 2670 | 1468.5 | 64.1 | settlement |
S14 | Kihonda | DW | 32.9 | 7.7 | 1082 | 595.1 | 89.4 | settlement |
S15 | Mazimbu | DW | 30.4 | 7.8 | 3310 | 1820.5 | 208.4 | settlement |
S16 | Mazimbu | SW | 28.7 | 7.71 | 1505 | 827.75 | 167.5 | settlement |
S17 | Mazimbu | SW | 29.1 | 7.45 | 911 | 501.05 | 113.1 | agriculture |
S18 | U/taifa | BH | 29.7 | 7 | 1435 | 789.25 | 284.1 | settlement |
S19 | U/taifa | BH | 30.4 | 7.88 | 2170 | 1193.5 | 33.2 | settlement |
S20 | U/taifa | SW | 28.1 | 8.33 | 1568 | 862.4 | 40.6 | settlement |
S21 | Mafiga | BH | 28.8 | 6.71 | 1782 | 980.1 | 233.1 | settlement |
S22 | Mafiga | BH | 29.2 | 7.58 | 985 | 541.75 | 98 | settlement |
S23 | Mafiga | BH | 30.9 | 7.8 | 1881 | 1034.55 | 39.4 | settlement |
S24 | Boma | BH | 31.6 | 7.64 | 616 | 338.8 | 40 | settlement |
S25 | Boma | BH | 28.2 | 7.3 | 251 | 138.05 | 40 | settlement |
S26 | Boma | BH | 30.2 | 7.5 | 611 | 336.05 | 9 | settlement |
S27 | Mbuyuni | BH | 30.5 | 7.4 | 1642 | 903.1 | 109 | settlement |
S28 | Mbuyuni | BH | 30.3 | 7.2 | 1978 | 1087.9 | 109 | settlement |
S29 | Mbuyuni | DW | 28.7 | 7.2 | 868 | 477.4 | 49 | settlement |
S30 | M/mpya | SW | 26.4 | 6.7 | 1043 | 573.65 | 98.2 | settlement |
S31 | M/mpya | BH | 24.9 | 7 | 1985 | 1091.75 | 43.4 | settlement |
S32 | M/mpya | SW | 26.4 | 6.5 | 862 | 474.1 | 38.3 | settlement |
S33 | Kichangani | BH | 27 | 7.5 | 4190 | 2304.5 | 248.8 | settlement |
S34 | Kichangani | BH | 27.9 | 7.1 | 654 | 359.7 | 76 | settlement |
S35 | Kichangani | DW | 28.8 | 7.2 | 200 | 110 | 24 | agriculture |
S36 | Bigwa | BH | 29.6 | 7.3 | 927 | 509.85 | 222.8 | settlement |
S37 | Bigwa | SW | 28.2 | 6.8 | 1207 | 663.85 | 142 | settlement |
S38 | Kingo | BH | 30.2 | 7.5 | 964 | 530.2 | 5.4 | settlement |
S39 | Kihonda | BH | 30.4 | 7.2 | 1786 | 982.3 | 14.8 | settlement |
S40 | Kihonda | BH | 29.8 | 7.4 | 2160 | 1188 | 30 | settlement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkumbo, N.J.; Mussa, K.R.; Mariki, E.E.; Mjemah, I.C. The Use of the DRASTIC-LU/LC Model for Assessing Groundwater Vulnerability to Nitrate Contamination in Morogoro Municipality, Tanzania. Earth 2022, 3, 1161-1184. https://doi.org/10.3390/earth3040067
Mkumbo NJ, Mussa KR, Mariki EE, Mjemah IC. The Use of the DRASTIC-LU/LC Model for Assessing Groundwater Vulnerability to Nitrate Contamination in Morogoro Municipality, Tanzania. Earth. 2022; 3(4):1161-1184. https://doi.org/10.3390/earth3040067
Chicago/Turabian StyleMkumbo, Neema J., Kassim R. Mussa, Eliapenda E. Mariki, and Ibrahimu C. Mjemah. 2022. "The Use of the DRASTIC-LU/LC Model for Assessing Groundwater Vulnerability to Nitrate Contamination in Morogoro Municipality, Tanzania" Earth 3, no. 4: 1161-1184. https://doi.org/10.3390/earth3040067
APA StyleMkumbo, N. J., Mussa, K. R., Mariki, E. E., & Mjemah, I. C. (2022). The Use of the DRASTIC-LU/LC Model for Assessing Groundwater Vulnerability to Nitrate Contamination in Morogoro Municipality, Tanzania. Earth, 3(4), 1161-1184. https://doi.org/10.3390/earth3040067