A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States
Abstract
:1. Introduction
2. Background: The NWRS
3. Blueprint for the NWRS
3.1. Assessment Approaches in Blueprint
3.2. Management Considerations in the Blueprint
4. Application of the Blueprint to the Tetlin NWR
4.1. Refuge Description
4.2. Potential for Continental Re-Sorting on the Tetlin NWR
4.2.1. Biome Plots
4.2.2. Climate-Biome Clusters
Analysis | Description | Extent | Emission Scenarios | GCMs | Time Steps | Continental Re-Sorting Signal |
---|---|---|---|---|---|---|
Biome Plots | Adaptwest [48] average annual temperature and annual average precipitation were used to summarize divergent climate futures and overlay area of interest on Whittaker’s biome plot. | North America—1 km2 resolution | SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 | ACCESS-ESM1-5, CNRM-ESM2-1, EC-Earth3, GFDL-ESM4, GISS-E2-1-G, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL and 13 model ensemble | historical (1961–1990), historical (1991–2020), 2041–2070 | Boreal biome; woodland/shrubland biome |
Climate- Biome Clusters | Average monthly temperature and precipitation variables were clustered into 18 climate-biome types forecast climate futures [55]. | Alaska and Northern Canada—2 km2 resolution | b1, a1b1, a2 | ECHAM5, GFDL2.1, MIROC3.2, HADLEY3, CGCM3.1, and 5-model average | 2010–2019, 2030–2039, 2060–2069, 2090–2099 | Southern boreal biome; aspen parkland biome; weaker signal for grassland biome. |
Ecoregional Climate Envelop Model | Bioclimatic variables were used to predict and forecast 182 ecoregions in North America [56]. | North America—1 km2 resolution | rcp4.5, rcp8.5 | 15-model ensemble | Historical (1969–1990), 2041–2070, 2071–2100 | Southern boreal; aspen parkland |
4.2.3. Ecoregional Climate Envelop Model
4.2.4. Continental Re-Sorting Summary
4.3. Plausible Ecological Trajectories on Tetlin NWR
4.3.1. Spruce-Dominated Boreal Forest Trajectories
4.3.2. Deciduous Dominated Forest Trajectories
4.3.3. Aspen Parkland/Shrubland/Grassland Trajectories
4.4. RAD Options for the Tetlin NWR
4.4.1. Reburning and Severe Fires
4.4.2. Recruitment Failure
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beier, P.; Brost, B. Use of land facets to plan for climate change: Conserving the arenas, not the actors. Conserv. Biol. 2010, 24, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Hannah, L. A global conservation system for climate-change adaptation. Conserv. Biol. 2010, 24, 70–77. [Google Scholar] [CrossRef]
- Heller, N.E.; Zavaleta, E.S. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 2009, 142, 14–32. [Google Scholar] [CrossRef]
- Stein, B.A.; Glick, P.; Edelson, N.; Staudt, A. Climate-Smart Conservation: Putting Adaptation Principles into Practice; National Wildlife Federation: Washington, DC, USA, 2014; p. 262. [Google Scholar]
- Jones, R.; Patwardhan, A.; Cohen, S.; Dessai, S.; Lammel, A.; Lempert, R.; Mirza, M.Q.; Storch, H.V. Foundations for Decision Making. In Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Chapin, F.S., III; Kofinas, G.P.; Folke, C.; Chapin, M.C. Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Jackson, S.T.; Hobbs, R.J. Ecological restoration in the light of ecological history. Science 2009, 325, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.J.; Thompson, L.M.; Morton, J.M.; Beever, E.A.; Clifford, M.; Limpinsel, D.; Magill, R.T.; Magness, D.R.; Melvin, T.A.; Newman, R.A.; et al. RAD adaptive management for transforming ecosystems. Bioscience 2022, 72, 45–56. [Google Scholar] [CrossRef]
- Cohen, J.M.; Lajeunesse, M.J.; Rohr, J.R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 2018, 8, 224–228. [Google Scholar] [CrossRef]
- Sergio, F.; Blas, J.; Hiraldo, F. Animal responses to natural disturbance and climate extremes: A review. Glob. Planet. Change 2018, 161, 28–40. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.S.; Hall, C. Novel Ecosystems: Intervening in the New Ecological World Order; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Harris, R.M.; Beaumont, L.J.; Vance, T.R.; Tozer, C.R.; Remenyi, T.A.; Perkins-Kirkpatrick, S.E.; Mitchell, P.J.; Nicotra, A.B.; McGregor, S.; Andrew, N.R.; et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 2018, 8, 579–587. [Google Scholar] [CrossRef]
- Schuurman, G.W.; Hoffman, C.H.; Cole, D.N.; Lawrence, D.J.; Morton, J.M.; Magness, D.R.; Craven, A.E.; Covington, S.; O’Malley, R.; Fisichelli, N.A. Resist-Accept-Direct (RAD)-A Framework for the 21st-Century Natural Resource Manager; National Park Service: Fort Collins, CO, USA, 2020. [Google Scholar]
- Schuurman, G.W.; Cole, D.N.; Craven, A.E.; Covington, S.D.; Crausbay, S.D.; Hoffman, C.H.; Lawrence, D.J.; Magness, D.R.; Morton, J.M.; Nelson, E.A.; et al. Navigating ecological transformation: Resist-Accept-Direct (RAD) as a path to a new resource management paradigm. Bioscience 2022, 72, 16–29. [Google Scholar] [CrossRef]
- Thompson, L.M.; Lynch, A.J.; Beever, E.A.; Engman, A.C.; Falke, J.A.; Jackson, S.T.; Krabbenhoft, T.J.; Lawrence, D.J.; Limpinsel, D.; Magill, R.T.; et al. Responding to ecosystem transformation: Resist, accept, or direct? Fisheries 2021, 46, 8–21. [Google Scholar] [CrossRef]
- Lynch, A.J.; Thompson, L.M.; Beever, E.A.; Cole, D.N.; Engman, A.C.; Hoffman, C.H.; Jackson, S.T.; Krabbenhoft, T.J.; Lawrence, D.J.; Limpinsel, D.; et al. Managing for RADical Ecosystem Change: Applying the Resist-Accept-Direct (RAD) Framework. Front. Ecol. Environ. 2021, 19, 461–469. [Google Scholar] [CrossRef]
- Gorddard, R.; Colloff, M.J.; Wise, R.M.; Ware, D.; Dunlop, M. Values, rules and knowledge: Adaptation as change in the decision context. Environ. Sci. Policy 2016, 57, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Colloff, M.J.; Lavorel, S.; van Kerkhoff, L.E.; Wyborn, C.A.; Fazey, I.; Gorddard, R.; Mace, G.M.; Foden, W.B.; Dunlop, M.; Prentice, I.C.; et al. Transforming conservation science and practice for a postnormal world. Conserv. Biol. 2017, 31, 1008–1017. [Google Scholar] [CrossRef]
- LeDee, O.E.; Handler, S.D.; Hoving, C.L.; Swanston, C.W.; Zuckerberg, B. Preparing Wildlife for Climate Change: How Far Have We Come? J. Wildl. Manag. 2021, 85, 7–16. [Google Scholar] [CrossRef]
- St-Laurent, G.P.; Oakes, L.E.; Cross, M.; Hagerman, S. R–R–T (resistance–resilience–transformation) typology reveals differential conservation approaches across ecosystems and time. Commun. Biol. 2021, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Berrang-Ford, L.; Siders, A.R.; Lesnikowski, A.; Fischer, A.P.; Callaghan, M.W.; Haddaway, N.R.; Mach, K.J.; Araos, M.; Shah, M.A.R.; Wannewitz, M.; et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 2021, 11, 989–1000. [Google Scholar] [CrossRef]
- Kerkhoff, L.V.; Munera, C.; Dudley, N.; Guevara, O.; Wyborn, C.; Figueroa, C.; Dunlop, M.; Hoyos, M.A.; Castiblanco, J.; Becerra, L. Towards future-oriented conservation: Managing protected areas in an era of climate change. Ambio 2019, 48, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Markon, C.J.; Gray, S.T.; Berman, M.; Eerkes-Medrano, L.; Hennessy, T.; Huntington, H.P.; Littell, J.; McCammon, M.; Thoman, R.; Trainor, S. Alaska. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume 2, pp. 1185–1241. [Google Scholar]
- Fischman, R.L. The significance of national wildlife refuges in the development of US conservation policy. J. Land Use Environ. Law 2005, 21, 1–22. [Google Scholar]
- Magness, D.R.; Lovecraft, A.L.; Morton, J.M. Factors influencing individual management preferences for facilitating adaptation to climate change within the National Wildlife Refuge System. Wildl. Soc. Bull. 2012, 36, 457–468. [Google Scholar] [CrossRef]
- Rowland, E.R.; Cross, M.S.; Hartmann, H. Considering Multiple Futures: Scenario Planning to Address Uncertainty in Natural Resource Conservation; US Fish & Wildlife Service: Washington DC, USA, 2016. [Google Scholar]
- Wilkening, J.L.; Magness, D.R.; Harrington, A.; Johnson, K.; Covington, S.; Hoffman, J.R. Incorporating climate uncertainty into conservation planning for wildlife managers. Earth 2022, 3, 93–114. [Google Scholar] [CrossRef]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario planning: A tool for conservation in an uncertain world. Conserv. Biol. 2003, 17, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Walters, C.J. Adaptive Management of Renewable Resources; Macmillan Publishers Ltd.: London, UK, 1986. [Google Scholar]
- Williams, B.K.; Szaro, R.C.; Shapiro, C.D. Adaptive Management: The US Department of the Interior Technical Guide; Federal Government Series; U.S. Department of the Interior: Washington, DC, USA, 2009. [Google Scholar]
- Colloff, M.J.; Gorddard, R.; Abel, N.; Locatelli, B.; Wyborn, C.; Butler, J.R.; Lavorel, S.; van Kerkhoff, L.; Meharg, S.; Múnera-Roldán, C.; et al. Adapting transformation and transforming adaptation to climate change using a pathways approach. Environ. Sci. Policy 2021, 124, 163–174. [Google Scholar] [CrossRef]
- Wise, R.M.; Fazey, I.; Smith, M.S.; Park, S.E.; Eakin, H.C.; Garderen, E.A.V.; Campbell, B. Reconceptualising adaptation to climate change as part of pathways of change and response. Glob. Environ. Change 2014, 28, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 2013, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Magness, D.R.; Hoang, L.; Belote, R.T.; Brennan, E.J.; Carr, W.; Chapin, F.S., III; Clifford, K.R.; Morrison, W.; Morton, J.M.; Sofaer, H.R. Management Foundations for Navigating Ecological Transformation by Resisting, Accepting, or Directing Social-Ecological Change. BioScience 2022, 72, 30–44. [Google Scholar] [CrossRef]
- Lawrence, J.; Haasnoot, M. What it took to catalyse uptake of dynamic adaptive pathways planning to address climate change uncertainty. Environ. Sci. Policy 2017, 68, 47–57. [Google Scholar] [CrossRef]
- Ramm, T.D.; Watson, C.W.; White, C.J. Strategic adaptation pathway planning to manage sea-level rise and changing coastal flood risk. Environ. Sci. Policy 2018, 87, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, B.R.; Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 2019, 9, 581–586. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Crausbay, S.D.; Sofaer, H.R.; Cravens, A.E.; Chaffin, B.C.; Clifford, K.R.; Gross, J.E.; Knapp, C.N.; Lawrence, D.J.; Magness, D.R.; Miller-Rushing, A.J.; et al. A science agenda to inform natural resource management decisions in an era of ecological transformation. Bioscience 2022, 72, 71–90. [Google Scholar] [CrossRef]
- Kemp, K.B.; Blades, J.J.; Klos, P.Z.; Hall, T.E.; Force, J.E.; Morgan, P.; Tinkham, W.T. Managing for climate change on federal lands of the western United States: Perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef] [Green Version]
- Clifford, K.R.; Yung, L.; Travis, W.R.; Rondeau, R.; Neely, B.; Rangwala, I.; Burkardt, N.; Wyborn, C. Navigating climate adaptation on public lands: How views on ecosystem change and scale interact with management approaches. Environ. Manag. 2020, 66, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Aplet, G.H.; McKinley, P.S. A portfolio approach to managing ecological risks of global change. Ecosyst. Health Sustain. 2017, 3, e01261. [Google Scholar] [CrossRef]
- Magness, D.R.; Morton, J.M. Implementing Portfolios of Adaptation Strategies on US Conservation Lands in the Anthropocene; Reference Module in Earth Systems and Environmental Sciences; Elsevier Inc.: San Diego, CA, USA, 2017. [Google Scholar]
- Fischman, R. The National Wildlife Refuges: Coordinating a Conservation System Through Law; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Schuur, E.A.; Mack, M.C. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Staudinger, M.D.; Grimm, N.B.; Staudt, A.; Carter, S.L.; Chapin, F.S. Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services; United States Global Change Research Program: Washington, DC, USA, 2012. [Google Scholar]
- Adaptwest Project. Gridded Current and Projected Climate Data for North America at 1 km Resolution, Generated using the ClimateNA v7.01 Software (T. Wang et al., 2021) [Data set]. Available online: www.adaptwest.databasin.org (accessed on 30 September 2021).
- Mahony, C.R.; Wang, T.; Hamann, A.; Cannon, A.J. A CMIP6 ensemble for downscaled monthly climate normals over North America. Earth ArXiv 2021. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Runyon, A.N.; Gross, J.E.; Schuurman, G.W.; Miller, B.W. Divergent, plausible, and relevant climate futures for near-and long-term resource planning. Clim. Change 2021, 167, 1–20. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems; CAB International: Wallingford, UK, 1970. [Google Scholar]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B.; et al. Managing climate change refugia for climate adaptation. PLoS ONE 2016, 11, e0159909. [Google Scholar] [CrossRef] [Green Version]
- Michalak, J.L.; Withey, J.C.; Lawler, J.J.; Case, M.J. Future climate vulnerability-evaluating multiple lines of evidence. Front. Ecol. Environ. 2017, 15, 367–376. [Google Scholar] [CrossRef]
- Stralberg, D.; Arseneault, D.; Baltzer, J.L.; Barber, Q.E.; Bayne, E.M.; Boulanger, Y.; Brown, C.D.; Cooke, H.A.; Devito, K.; Edwards, J.; et al. Climate-change refugia in boreal North America: What, where, and for how long? Front. Ecol. Environ. 2020, 18, 261–270. [Google Scholar] [CrossRef]
- SNAP-EWHALE. Predicting Future Potential Climate-Biomes for the Yukon, Northwest Territories and Alaska; University of Alaska: Fairbanks, AK, USA. Available online: http://ckan.snap.uaf.edu/dataset/alaska-canada-biome-shift-project-data (accessed on 30 September 2021).
- Stralberg, D. Climate-Projected Distributional Shifts and Refugia for North American Ecoregions [Data Set]. Available online: https://adaptwest.databasin.org (accessed on 30 September 2021).
- Hogg, E.H.; Hurdle, P.A. The aspen parkland in western Canada: A dry-climate analogue for the future boreal forest? Water Air Soil Pollut. 1995, 82, 391–400. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrows, C.W.; Ramirez, A.R.; Sweet, L.C.; Morelli, T.L.; Millar, C.I.; Frakes, N.; Rodgers, J.; Mahalovich, M.F. Validating climate-change refugia: Empirical bottom-up approaches to support management actions. Front. Ecol. Environ. 2020, 18, 298–306. [Google Scholar] [CrossRef]
- Lynch, J.A.; Lloyd, A.H.; Barber, V.; Edwards, M.E.; Bigelow, N.H.; Finney, B.P. Holocene development of the Alaskan boreal forest. In Alaska’s Changing Boreal Forest; Oxford University Press: London, UK, 2006; p. 62. [Google Scholar]
- Pattison, R.; Andersen, H.; Gray, A.; Schulz, B.; Smith, R.J.; Jovan, S. Forests of the Tanana Valley State Forest and Tetlin National Wildlife Refuge, Alaska: Results of the 2014 Pilot Inventory; General Technical Report PNW-GTR-967 Portland; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2018; p. 967. [Google Scholar]
- Foster, A.C.; Armstrong, A.H.; Shuman, J.K.; Shugart, H.H.; Rogers, B.M.; Mack, M.C.; Goetz, S.J.; Ranson, K.J. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecol. Model. 2019, 409, 108765. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Schuur, E.A.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Purdy, B.G.; Dale, M.R.; MacDonald, S.E. The regeneration niche of white spruce following fire in the mixed wood boreal forest. Silva Fenn. 2002, 36. [Google Scholar] [CrossRef] [Green Version]
- Nicklen, E.F.; Roland, C.A.; Ruess, R.W.; Scharnweber, T.; Wilmking, M. Divergent responses to permafrost and precipitation reveal mechanisms for the spatial variation of two sympatric spruce. Ecosphere 2021, 12, 03622. [Google Scholar] [CrossRef]
- Wirth, C.; Lichstein, J.W.; Dushoff, J.; Chen, A.; Chapin, F.S. White spruce meets black spruce: Dispersal, postfire establishment, and growth in a warming climate. Ecol. Monogr. 2008, 78, 489–505. [Google Scholar] [CrossRef]
- Alexander, H.D.; Mack, M.C.; Goetz, S.; Beck, P.S.; Belshe, E.F. Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests. Ecosphere 2012, 3, 1–21. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Day, N.J.; Walker, X.J.; Greene, D.; Mack, M.C.; Alexander, H.D.; Arseneault, D.; Barnes, J.; Bergeron, Y.; Boucher, Y.; et al. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl. Acad. Sci. USA 2021, 118, e2024872118. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.H.; Rupp, T.S.; Olson, M.A.; Duffy, P.A. Is Alaska’s boreal forest now crossing a major ecological threshold? Arct. Antarct. Alp. Res. 2012, 44, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Hansen, W.D.; Fitzsimmons, R.; Olnes, J.; Williams, A.P. An alternate vegetation type proves resilient and persists for decades following forest conversion in the North American boreal biome. J. Ecol. 2021, 109, 85–98. [Google Scholar] [CrossRef]
- Starfield, A.M.; Chapin, F.S., III. Model of transient changes in arctic and boreal vegetation in response to climate and land use change. Ecol. Appl. 1996, 6, 842–864. [Google Scholar] [CrossRef]
- Viereck, L.A.; Dyrness, C.T.; Batten, A.R.; Wenzlick, K.J. The Alaska Vegetation Classification; Gen Tech Rep PNW-GTR-286; Pacific Northwest Research Station, US Forest Service: Portland, OR, USA, 1992; p. 278. [Google Scholar]
- Hogg, E.H.; Lieffers, V.J. The relationship between seasonal changes in rhizome carbohydrate reserves and recovery following disturbance in Calamagrostis canadensis. Can. J. Bot. 1991, 69, 641–646. [Google Scholar] [CrossRef]
- Haeussler, S.; Coates, D. Autecological Characteristics of Selected Species that Compete with Conifers in British Columbia: A Literature Review; Land Management Report, Ministry of Forests: Victoria, BC, Canada, 1986. [Google Scholar]
- Collins, W.B.; Schwartz, C.C. Logging in Alaska’s boreal forest: Creation of grasslands or enhancement of moose habitat. Alces A J. Devoted Biol. Manag. Moose 1998, 34, 355–374. [Google Scholar]
- Hess, K.A.; Cullen, C.; Cobian-Iñiguez, J.; Ramthun, J.S.; Lenske, V.; Magness, D.R.; Bolten, J.D.; Foster, A.C.; Spruce, J. Satellite-based assessment of grassland conversion and related fire disturbance in the Kenai Peninsula, Alaska. Remote Sens. 2019, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- Shipley, L. Fifty years of food and foraging in moose: Lessons in ecology from a model herbivore. Alces A J. Devoted Biol. Manag. Moose 2010, 46, 1–13. [Google Scholar]
- Brown, C.L.; Kielland, K.; Euskirchen, E.S.; Brinkman, T.J.; Ruess, R.W.; Kellie, K.A. Fire-mediated patterns of habitat use by male moose (Alces alces) in Alaska. Can. J. Zool. 2018, 96, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Seaton, C.T. Winter Foraging Ecology of Moose in the Tanana Flats and Alaska Range Foothills; University of Alaska: Fairbanks, AK, USA, 2002. [Google Scholar]
- Boucher, D.; Gauthier, S.; Thiffault, N.; Marchand, W.; Girardin, M.; Urli, M. How climate change might affect tree regeneration following fire at northern latitudes: A review. New For. 2020, 51, 543–571. [Google Scholar] [CrossRef] [Green Version]
- Joly, K.; Duffy, P.A.; Rupp, T.S. Simulating the effects of climate change on fire regimes in Arctic biomes: Implications for caribou and moose habitat. Ecosphere 2012, 3, 1–18. [Google Scholar] [CrossRef]
- Gardner, C.L.; DeGange, A.R. A Review of Information on Wood Bison in Alaska and Adjacent Canada, with Particular Reference to the Yukon Flats; Alaska Department of Fish and Game: Fairbanks, AK, USA, 2003. [Google Scholar]
- Macias-Fauria, M.; Jepson, P.; Zimov, N.; Malhi, Y. Pleistocene Arctic megafaunal ecological engineering as a natural climate solution? Philos. Trans. R. Soc. B 2020, 375, 20190122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, C.D.; Hill, J.K.; Ward, C.; Hatfield, J.H. Facilitating Dynamic and Inclusive Biodiversity Conservation in Britain: An Anthropocene Perspective; Leverhulme Center for Anthropocene Biodiversity, University of York: York, UK, 2021. [Google Scholar] [CrossRef]
- Anderson, M.G.; Ferree, C.E. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS ONE 2010, 5, e11554. [Google Scholar] [CrossRef] [PubMed]
- Beier, P.; Hunter, M.L.; Anderson, M. Conserving nature’s stage. Conserv. Biol. 2015, 29, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Magness, D.R.; Sesser, A.L.; Hammond, T. Using topographic geodiversity to connect conservation lands in the Central Yukon, Alaska. Landsc. Ecol. 2018, 33, 547–556. [Google Scholar] [CrossRef]
- Knutti, R. Should we believe model predictions of future climate change? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 4647–4664. [Google Scholar] [CrossRef]
- Runge, M.C.; Grand, J.B.; Mitchell, M.S. Structured Decision Making. In Wildlife Management and Conservation: Contemporary Principles and Practices; Johns Hopkins University Press: Baltimore, MD, USA, 2013; pp. 51–72. [Google Scholar]
Ecological Type | % Area by Time Period | |||||
---|---|---|---|---|---|---|
1961–1990 | 2010–2019 | 2030–2039 | 2060–2069 | 2090–2099 | Trend | |
Dry boreal wooded grasslands-mixed coniferous forests and grasses | 20% | 25% (4–80%) | 30% (1–66%) | 26% (4–52%) | 9% (0–21%) | ? |
Mixed boreal forest | 33% | 20% (16–25%) | 12% (5–25%) | 0% | 0% | - |
More densely forested closed-canopy boreal | 32% | 27% (0–46%) | 25% (2–64%) | 12% (0–28%) | 9% (0–18%) | - |
Densely forested southern boreal | 0% | 0% | 2% (0–6%) | 4% (2–7%) | 19% (4–44%) | + |
Southern boreal/aspen parkland | 14% | 27% (7–36%) | 33% (3–43%) | 48% (6–87%) | 69% (53–78%) | + |
Southern boreal, mixed forest | 1% | 3% (1–13%) | 3% (1–6%) | 14% (0–44%) | 0% | ? |
Prairie and grasslands | 0% | 0% | 1% (0–2%) | 1% (0–4%) | 5% (1–10%) | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magness, D.R.; Wagener, E.; Yurcich, E.; Mollnow, R.; Granfors, D.; Wilkening, J.L. A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States. Earth 2022, 3, 136-156. https://doi.org/10.3390/earth3010011
Magness DR, Wagener E, Yurcich E, Mollnow R, Granfors D, Wilkening JL. A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States. Earth. 2022; 3(1):136-156. https://doi.org/10.3390/earth3010011
Chicago/Turabian StyleMagness, Dawn Robin, Ella Wagener, Emily Yurcich, Ryan Mollnow, Diane Granfors, and Jennifer L. Wilkening. 2022. "A Multi-Scale Blueprint for Building the Decision Context to Implement Climate Change Adaptation on National Wildlife Refuges in the United States" Earth 3, no. 1: 136-156. https://doi.org/10.3390/earth3010011