Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition for Land Use Classification
2.3. Image Classification of Different Land Use Classes
2.4. Soil Scanning to Estimate Soil Organic Matter
2.5. Loss on Ignition to Estimate Soil Organic Matter
2.6. Soil Aggregate Stability (Slake Test)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Land Use/Cover Changes
3.2. Comparison of Scanner and Laboratory Estimates of SOM
3.3. Soil Organic Matter on Soil Aggregate Stability in Different Land Uses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Forest Land | |||||||
---|---|---|---|---|---|---|---|
S/N | Place | Coordinates (Latitude, Longitude) | Soil Texture | LOI | SOM | WSA | |
1 | Msitu wa Mbogo | −3.52608 | 36.87787 | Clay loam | 2.01 | 2.9 | 5 |
2 | Mbuguni B/Kubwa | −3.56427 | 36.9433 | Loam | 3.073 | 4.59 | 8 |
3 | Mawalla TPC | −3.50929 | 37.43439 | Clay loam | 1.77 | 2.5 | 7 |
4 | Kifaru H School | −3.52821 | 37.55433 | Clay loam | 8.077 | 10.66 | 8 |
5 | Kochakindo Kahe M | −3.50574 | 37.52873 | Clay loam | 5.74 | 8.03 | 8 |
6 | Kikuletwa Bridge | −3.54595 | 37.31344 | Silty loam | 3.26 | 3.85 | 8 |
7 | Sakilla Meru 1 | −3.33825 | 36.96451 | Loam | 4.2 | 4.7 | 8 |
8 | Sakilla Meru 2 | −3.33333 | 36.96379 | Clay loam | 3.43 | 4.01 | 8 |
9 | TPC Msarakia | −3.50892 | 37.34286 | Clay loam | 3.31 | 6.88 | 8 |
10 | Sakilla Meru 3 | −3.33056 | 36.95861 | Loam | 4.02 | 5.45 | 8 |
11 | Sakilla Meru 4 | −3.33958 | 36.96833 | Clay loam | 2.57 | 4.72 | 6 |
12 | Bwawani | −3.54067 | 36.85773 | Clay loam | 2.496 | 3.16 | 8 |
Average | 3.66 | 5.12 | 5.5 | ||||
Cultivated | |||||||
1 | Soko Scheme | −3.47948 | 37.50149 | Clay loam | 1.44 | 2.39 | 8 |
2 | Kikuletwa bridge | −3.55414 | 37.30683 | Silty loam | 1.46 | 2.43 | 7 |
3 | Kituri Mwanga | −3.50029 | 37.55564 | Sandy Clay loam | 1.97 | 3.04 | 4 |
4 | Longoi kwa sadala | −3.40601 | 37.26669 | Clay | 1.35 | 2.89 | 8 |
5 | Machame Gabriella | −3.33576 | 37.23301 | Clay | 2.73 | 4.32 | 5 |
6 | Kochakindo Kahe/Msh | −3.4979 | 37.53082 | Loam | 3.86 | 7.14 | 3 |
7 | Mnadani Machame | −3.32695 | 37. 23079 | Clay | 2.49 | 2.86 | 1 |
8 | Msitu wa Tembo | −3.57212 | 37.30344 | Clay loam | 2.88 | 4.82 | 8 |
9 | Kituri Proper | −3.53708 | 37.53488 | Sandy Clay loam | 3.07 | 5.78 | 0 |
10 | Hai Town | −3.3258 | 37.16489 | Clay | 2.96 | 4.15 | 1 |
11 | Chekereni | −3.458273 | 37.541108 | Silty loam | 1.32 | 0.93 | 1 |
12 | Kiomo Kahe/Msh | −3.48152 | 37.52188 | Loam | 1.33 | 1.32 | 1 |
Average | 2.24 | 3.51 | 3.92 | ||||
Grassland | |||||||
1 | Kochakindo Kahe M | −3.50184 | 37.53162 | Clay | 2.88 | 4.51 | 8 |
2 | Kituri Proper | −3.53377 | 37.53155 | Loam | 3.27 | 6.76 | 3 |
3 | Tindigani Masaini | −3.43491 | 37.12334 | Clay loam | 4.07 | 8.20 | 5 |
4 | Kiomu Majengo | −3.49196 | 37.53977 | Loam | 1.03 | 1.36 | 5 |
5 | Chemchem | −3.58688 | 37.33495 | Loam | 1.25 | 2.79 | 8 |
6 | Arusha Airport | −3.36487 | 36.61352 | Loam | 2.18 | 4.98 | 8 |
7 | USA Leganga | −3.37275 | 36.84336 | Clay loam | 1.5 | 3.90 | 8 |
8 | Mikocheni Kirungu | −3.59006 | 37.40077 | Silty loam | 1.54 | 6.17 | 5 |
9 | Kahe Mashariki | −3.51569 | 37.51675 | Loam | 1.97 | 4.40 | 3 |
10 | Ngaramtoni juu | −3.33712 | 36.62212 | Loam | 2.3 | 5.11 | 5 |
Average | 2.19 | 4.82 | 5.8 | ||||
Bushland | |||||||
1 | Maweni Kikwe | −3.45577 | 36.83135 | Clay | 2.74 | 2.98 | 3 |
2 | Kituri Proper | −3.5346 | 37.53488 | Loamy Sand | 2.13 | 2.79 | 3 |
3 | Karangai USA | −3.4814 | 36.86903 | Loam | 2.32 | 2.51 | 5 |
4 | Bwawani | −3.5486 | 36.85565 | Clay loam | 2.34 | 3.18 | 2 |
5 | Soko village | −3.49737 | 37.48351 | Loam | 4.97 | 6.76 | 3 |
6 | Mikocheni B | −3.59063 | 37.42077 | Sandy Loam | 2.32 | 3.49 | 3 |
7 | Masama Rundugai | −3.42217 | 37.23557 | Clay loam | 2.79 | 3.15 | 3 |
8 | Mawalla | −3.55303 | 37.42863 | Clay loam | 4.07 | 6.66 | 2 |
9 | Msitu wa Tembo | −3.57212 | 37.30344 | Clay loam | 2.08 | 3.09 | 4 |
10 | Chekereni Majengo | −3.47629 | 37.53977 | Silty loam | 1.89 | 2.22 | 1 |
Average | 2.86 | 3.7 | 2.9 | ||||
Bareland | |||||||
1 | Kia Kaloleni 1 | −3.4401 | 37.04131 | Clay loam | 3.27 | 4.63 | 3 |
2 | Lengijave | −3.20137 | 36.62547 | Loam | 3.05 | 4.18 | 8 |
3 | Kia njiapanda | −3.37544 | 37.0482 | Clay loam | 2.62 | 4.39 | 0 |
4 | Leisinyai | −3.46666 | 37.05372 | Loam | 2.95 | 3.99 | 8 |
5 | Mikocheni A | −3.59006 | 37.40077 | Silty loam | 2.22 | 2.59 | 3 |
6 | Mererani | −3.45943 | 37.03773 | Clay loam | 3.82 | 4.61 | 5 |
7 | Sanya Palestina | −3.339693 | 37.08968 | Clay loam | 5.11 | 7.24 | 6 |
8 | Sanya roadtall | −3.35777 | 37.09375 | Sandy Clay loam | 6.7 | 6.83 | 6 |
9 | Sanya Power st | −3.37396 | 37.06587 | Sandy Clay loam | 5.69 | 7.69 | 6 |
10 | Kia kaloleni 2 | −3.43999 | 37.04177 | Clay loam | 4.58 | 5.54 | 7 |
Average | 4.00 | 5.2 | 5.2 |
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Mbonile, M.; Misana, S.; Sokoni, C. Land Use Change Patterns and Root Causes on the Southern Slopes of Mountain Kilimanjaro, Tanzania; LUCID Working Paper; Lucid International Ltd.: Nairobi, Kenya, 2003. [Google Scholar]
- National Bureau of Statistics, Tanzania. Population Estimates by Districts for the Year 2016 and 2017; Ministry of Finance: Dar es Salaam, Tanzania, 2018.
- NBS. Population and Housing Census: Population Distribution by Administrative Areas; Ministry of Finance: Dar es Salaam, Tanzania, 2012.
- Tadross, M.; Wolski, P. Climate change modelling for the Pangani Basin to support the IWRM planning process. In Pangani Basin Water Board, Moshi and IUCN Eastern and Southern Africa Regional Programme, Nairobi, Kenya; IUCN: Gland, Switzerland, 2010. [Google Scholar]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total. Environ. 2020, 703, 135016. [Google Scholar] [CrossRef]
- Amasi, A.I.M.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Reconstructing the changes in sedimentation and source provenance in East African hydropower reservoirs: A case study of Nyumba ya Mungu in Tanzania. Earth 2021, 2, 485–514. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Broeckx, J.; Nyssen, J. Sediment yield in Africa. Earth-Sci. Rev. 2014, 136, 350–368. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Tefera, B.; Ayele, G.; Atnafe, Y.; Jabbar, M.A.; Dubale, P. Nature and Causes of Land Degradation in Oromiya Region, Ethiopia—A Review; ILRI: Nairobi, Kenya; Ethiopian Agricultural Research Organization: Addis Ababa, Ethiopia, 2002. [Google Scholar]
- Mbagwu, J.S. Aggregate Stability and Soil Degradation in the Tropics. In Proceedings of the Conference Report on the Lecture Given at the College on Soil Physics, Trieste, Italy, 3–21 March 2003; pp. 246–252. [Google Scholar]
- Obalum, S.; Chibuike, G.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Martens, D. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Li, J.; Zhang, B.; Wang, L.; Wang, J.; He, H.; Zhang, X. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates. Sci. Rep. 2015, 5, 14687. [Google Scholar] [CrossRef] [PubMed]
- Angers, D.A. Changes in soil aggregation and organic carbon under corn and alfalfa. Soil Sci. Soc. Am. J. 1992, 56, 1244–1249. [Google Scholar] [CrossRef]
- Xie, J.-Y.; Xu, M.-G.; Ciren, Q.; Yang, Y.; Zhang, S.-L.; Sun, B.-H.; Yang, X.-Y. Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil. J. Integr. Agric. 2015, 14, 2405–2416. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Onweremadu, E.; Onyia, V.; Anikwe, M. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil Tillage Res. 2007, 97, 195–206. [Google Scholar] [CrossRef]
- Krol, A.; Lipiec, J.; Turski, M.; Kus, J. Effects of organic and conventional management on physical properties of soil aggregates. Int. Agrophysics 2013, 27, 15–21. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Wang, L.; Hu, Y.; Tsang, Y.F.; Zhang, Y.; Wu, J.; Fu, X.; Sun, Y. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 2018, 319, 194–203. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Shimizu, M.; Hatano, R. Short-term land-use change from grassland to cornfield increases soil organic carbon and reduces total soil respiration. Soil Tillage Res. 2019, 186, 1–10. [Google Scholar] [CrossRef]
- Karhu, K.; Wall, A.; Vanhala, P.; Liski, J.; Esala, M.; Regina, K. Effects of afforestation and deforestation on boreal soil carbon stocks—Comparison of measured C stocks with Yasso07 model results. Geoderma 2011, 164, 33–45. [Google Scholar] [CrossRef]
- Feng, J.; Xu, X.; Wu, J.; Zhang, Q.; Zhang, D.; Li, Q.; Long, C.; Chen, Q.; Chen, J.; Cheng, X. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China. Sci. Total. Environ. 2018, 640–641, 653–661. [Google Scholar] [CrossRef]
- Miller, G.; Rees, R.; Griffiths, B.; Ball, B.; Cloy, J. The sensitivity of soil organic carbon pools to land management varies depending on former tillage practices. Soil Tillage Res. 2019, 194, 104299. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Li, Z.; Liu, T.; Yang, X.; Wu, Y.; Song, Z. Effects of slope position and land use on the stability of aggregate-associated organic carbon in calcareous soils. Acta Geochim. 2017, 36, 456–461. [Google Scholar] [CrossRef]
- Kadlec, V.; Holubík, O.; Procházková, E.; Urbanová, J.; Tippl, M. Soil organic carbon dynamics and its influence on the soil erodibility factor. Soil Water Res. 2012, 7, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Krull, E.S.; Skjemstad, J.O.; Baldock, J.A. Functions of Soil Organic Matter and the Effect on Soil Properties: Cooperative Research Centre for Greenhouse Accounting Canberra, NSW, Australia; Grains Research & Development Corporation: Canaberra, Australia, 2004. [Google Scholar]
- Ndomba, P.M. Modeling of Erosion Processes and Reservoir Sedimentation Upstream of Nyumba ya Mungu Reservoir in the Pangani Basin. Ph.D. Thesis, University of Dar es Salaam, Dar es Salaam, Tanzania, 2007. [Google Scholar]
- Kijazi, A.L.; Reason, C.J.C. Analysis of the 2006 floods over northern Tanzania. Int. J. Clim. 2009, 29, 955–970. [Google Scholar] [CrossRef]
- Mahongo, S.B.; Shaghude, Y.W. Modelling the dynamics of the Tanzanian coastal waters. J. Oceanogr. Mar. Sci. 2014, 5, 1–7. [Google Scholar]
- Røhr, P.C.; Killingtveit, Å. Rainfall distribution on the slopes of Mt Kilimanjaro. Hydrol. Sci. J. 2003, 48, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Hellar-Kihampa, H.; Potgieter-Vermaak, S.; Van Meel, K.; Rotondo, G.G.; Kishimba, M.; Van Grieken, R. Elemental composition of bottom-sediments from Pangani river basin, Tanzania: Lithogenic and anthropogenic sources. Toxicol. Environ. Chem. 2012, 94, 525–544. [Google Scholar] [CrossRef]
- Shaghude, Y.W. Review of water resource exploitation and landuse pressure in the Pangani River Basin. West. Indian Ocean J. Mar. Sci. 2007, 5, 195–208. [Google Scholar] [CrossRef] [Green Version]
- IUCN/PBWO. Scenario Report: The Analysis of Water Allocation Scenarios for the Pangani River Basin; The World Conservation Union: Gland, Switzerland; Pangani Basin Water Office: Moshi, Tanzania, 2008.
- Schlüter, T. Geological Atlas of Africa; Springer: Berlin/Heidelberg, Germany, 2008; p. 307. [Google Scholar]
- Mzuza, M.K.; Zhang, W.; Kapute, F.; Selemani, J.R. Magnetic properties of sediments from the Pangani River Basin, Tanzania: Influence of lithology and particle size. J. Appl. Geophys. 2017, 143, 42–49. [Google Scholar] [CrossRef]
- Dewitte, O.; Jones, A.; Spaargaren, O.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Gallali, T.; Hallett, S.; Jones, R.; et al. Harmonisation of the soil map of Africa at the continental scale. Geoderma 2013, 211–212, 138–153. [Google Scholar] [CrossRef] [Green Version]
- McClaugherty, C. Soils and Decomposition; Mount Union College: Alliance, OH, USA, 2001. [Google Scholar]
- Schaetzl, R.J.; Thompson, M.L. Soils; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Turpie, J.; Ngaga, Y.M.; Karanja, F. Catchment Ecosystems and Downstream Water: The Value of Water Resources in the Pangani Basin, Tanzania; Technical Report; IUCN—The World Conservation Union, Ecosystems and Livelihoods Group Asia: Bangkok, Thailand, 2005. [Google Scholar]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Taweesuk, S.; Thammapala, P. Expert classification technique for mapping teak plantation areas in Thailand. In Proceedings of the Pecora 16 “Global Priorities in Land Remote Sensing”, Sioux Falls, SD, USA, 23–27 October 2005. [Google Scholar]
- Saskia, V.; Henri, H.; Christy, V.B.; Angelique, V.H. Placing soil information in the hands of farmers. Proceedings 2019, 30, 88. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Soil Sci. Soc. Am. 1996, 5, 961–1010. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Sprengel, C. About plant humus, humic acid and humic acid salts. Pharm. Arch. 1827, 21, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Herrick, J.; Whitford, W.; de Soyza, A.; Van Zee, J.; Havstad, K.; Seybold, C.; Walton, M. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 2001, 44, 27–35. [Google Scholar] [CrossRef]
- Said, M.; Komakech, H.C.; Munishi, L.K.; Muzuka, A.N.N. Evidence of climate change impacts on water, food and energy resources around Kilimanjaro, Tanzania. Reg. Environ. Chang. 2019, 19, 2521–2534. [Google Scholar] [CrossRef]
- Hyandye, C.; Martz, L.W. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int. J. Remote. Sens. 2017, 38, 64–81. [Google Scholar] [CrossRef]
- Soini, E. Land use change patterns and livelihood dynamics on the slopes of Mt. Kilimanjaro, Tanzania. Agric. Syst. 2005, 85, 306–323. [Google Scholar] [CrossRef] [Green Version]
- Hemp, A. Climate change and its impact on the forests of Kilimanjaro. Afr. J. Ecol. 2009, 47, 3–10. [Google Scholar] [CrossRef]
- Neff, R.; Chang, H.; Knight, C.G.; Najjar, R.G.; Yarnal, B.; Walker, H.A. Impact of climate variation and change on mid-Atlantic Region hydrology and water resources. Clim. Res. 2000, 14, 207–218. [Google Scholar] [CrossRef]
- Blake, W.H.; Rabinovich, A.; Wynants, M.; Kelly, C.; Nasseri, M.; Ngondya, I.; Patrick, A.; Mtei, K.; Munishi, L.; Boeckx, P.; et al. Soil erosion in East Africa: An interdisciplinary approach to realising pastoral land management change. Environ. Res. Lett. 2018, 13, 124014. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, J.M.; Mark, B.; Thompson, L.G.; Schotterer, U.; Lin, P.-N. A hydrogeochemical survey of Kilimanjaro (Tanzania): Implications for water sources and ages. Hydrogeol. J. 2010, 18, 985–995. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Henderson, K.A.; Brecher, H.H.; Zagorodnov, V.S.; Mashiotta, T.A.; Lin, P.-N.; Mikhalenko, V.N.; Hardy, D.R.; et al. Kilimanjaro ice core records: Evidence of holocene climate change in tropical Africa. Science 2002, 298, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastner, P.; Prinz, R.; Notarnicola, C.; Nicholson, L.; Sailer, R.; Schwaizer, G.; Paul, F. On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal landsat data. Remote. Sens. 2019, 11, 1410. [Google Scholar] [CrossRef] [Green Version]
- Gitec, W. Groundwater Assessment of the Pangani Basin, Tanzania; The Pangani Basin Water Board: Kilimanjaro, Tanzania; International Union for Conservation of Nature: Gland, Switzerland, 2011; Volume 151, pp. 1–156. [Google Scholar]
- Mbonile, M.J. Migration and intensification of water conflicts in the Pangani Basin, Tanzania. Habitat Int. 2005, 29, 41–67. [Google Scholar] [CrossRef]
- Yanda, P.; Shishira, E. Water resources management in the Pangani River Basin: Challenges and opportunities. In Forestry Conservation and Resource Utilisation on the Southern Slopes of Mount Kilimanjaro: Trends, Conflicts and Resolutions; Dar es Salaam University Press: Dar es Salaam, Tanzania, 2001; pp. 104–117. [Google Scholar]
- Misana, S.B.; Sokoni, C.; Mbonile, M.J. Land-use/cover changes and their drivers on the slopes of Mount Kilimanjaro, Tanzania. J. Geogr. Reg. Plan. 2012, 5, 151–164. [Google Scholar]
- Ndomba, P.M. Validation of GLASOD map for sediment sources and erosion processes identification in the Nyumba ya Mungu reservoir catchment. Int. J. Geosci. 2015, 6, 972–986. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.M.; Desanker, P.V. The impact of land use on soil carbon in Miombo Woodlands of Malawi. For. Ecol. Manag. 2004, 203, 345–360. [Google Scholar] [CrossRef]
- Arnalds, O. Volcanic soils of Iceland. Catena 2004, 56, 3–20. [Google Scholar] [CrossRef]
- Dungait, J.A.; Berhe, A.A.; Gregory, A.S.; Hopkins, D.W. Physical Protection and Mean Residence Time of Soil Carbon; CRC Press: Boca Raton, FL, USA, 2019; pp. 171–182. [Google Scholar]
- Collier, S.M.; Green, S.M.; Inman, A.; Hopkins, D.W.; Kendall, H.; Jahn, M.M.; Dungait, J.A.J. Effect of farm management on topsoil organic carbon and aggregate stability in water: A case study from Southwest England, UK. Soil Use Manag. 2021, 37, 49–62. [Google Scholar] [CrossRef]
- Sartori, F.; Lal, R.; Ebinger, M.H.; Eaton, J.A. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 2007, 122, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Emadodin, I.; Reiss, S.; Bork, H.R. A study of the relationship between land management and soil aggregate stability (case study near Albersdorf, Northern-Germany). J. Agric. Biol. Sci. 2009, 4, 48–53. [Google Scholar]
- Deng, L.; Shangguan, Z.-P.; Sweeney, S. “Grain for green” driven land use change and carbon sequestration on the Loess Plateau, China. Sci. Rep. 2014, 4, 7039. [Google Scholar] [CrossRef] [PubMed]
- Seeger, M.; Rodrigo-Comino, J.; Iserloh, T.; Brings, C.; Ries, J.B. Dynamics of runoff and soil erosion on abandoned steep vineyards in the Mosel Area, Germany. Water 2019, 11, 2596. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Pulido, M.; Giménez-Morera, A.; Keesstra, S. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Prog. Phys. Geogr. Earth Environ. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Abrishamkesh, S.; Gorji, M.; Asadi, H.J.I.A. Long-term effects of land use on soil aggregate stability. Int. Agrophysics 2011, 25, 103–108. [Google Scholar]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Dai, H.; Chen, Y.; Liu, K.; Li, Z.; Qian, X.; Zang, H.; Yang, X.; Zhao, Y.; Shen, Y.; Li, Z.; et al. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. J. Clean. Prod. 2019, 212, 393–400. [Google Scholar] [CrossRef]
- Nath, A.J.; Rattan, L.J.P. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region, USA. Pedosphere 2017, 27, 172–176. [Google Scholar] [CrossRef]
- Delelegn, Y.T.; Purahong, W.; Blazevic, A.; Yitaferu, B.; Wubet, T.; Göransson, H.; Godbold, D.L. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep. 2017, 7, 13602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.K.; Cui, M.; Lu, Q.; Liu, Y.G.; Guo, H.Y.; Zhou, J.X. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth 2016, 7, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Watts, C.; Dexter, A. The influence of organic matter in reducing the destabilization of soil by simulated tillage. Soil Tillage Res. 1997, 42, 253–275. [Google Scholar] [CrossRef]
- Zhang, B.; Horn, R.; Hallett, P.D. Mechanical resilience of degraded soil amended with organic matter. Soil Sci. Soc. Am. J. 2005, 69, 864–871. [Google Scholar] [CrossRef]
- Dungait, J.A.; Cardenas, L.M.; Blackwell, M.; Wu, L.; Withers, P.J.; Chadwick, D.R.; Bol, R.; Murray, P.; Macdonald, A.; Whitmore, A.; et al. Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci. Total. Environ. 2012, 434, 39–50. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef] [Green Version]
S/N | Land Use/Cover Class | Description |
---|---|---|
1 | Agricultural land (CL) | All cultivated land with crops and harvested crops |
2 | Water (WT) | Including water in wetlands, rivers, irrigated areas and fish ponds |
3 | Grassland (GL) | Areas dominated by short and tall grasses and bare soils in the dry season. |
4 | Bush land (BS) | Areas dominated with shrubs and less closed canopy |
5 | Bare land (BL) | Areas includes gullies, bare soils, rocky, sand and quarry |
6 | Built-up area (BLA) | Man-made infrastructure (urban and rural settlements) and roads (tarmac or paved) |
7 | Forest (FL) | Includes natural and planted forests with closed trees and closed canopy |
8 | Wetland (WTL) | Areas moderately saturated with water seasonally or permanently |
9 | Glacier ice (GLA) | Includes areas enclosed with glacier and ice |
Stability Class | Criteria for Assignment to Stability Class (for “Standard Characterization”) |
---|---|
0 | Soil too unstable to sample (falls through sieve). |
1 | 50% of structural integrity lost within 5 s of insertion AND or <10% remains after agitation |
2 | 50% of structural integrity lost 5–30 s after insertion AND or <10% remains after agitation |
3 | 50% of structural integrity lost 30–300 s after insertion AND or <10% remains after agitation |
4 | 10–25% of soil remains after 5 min agitation |
5 | 25–50% of soil remains after 5 min agitation |
6 | 50–75% of soil remains after 5 min agitation |
7 | 75–90% of soil remains after 5 min agitation |
8 | ˃90% of soil remains after 5 min agitation |
LU Classes | 1987 | 2018 | 1987–2018 | ||
---|---|---|---|---|---|
Area (km2) | % of Total | Area (km2) | % of Total | % Change | |
Built up | 2203.35 | 16.8 | 3015.1413 | 22.9 | 6.17 |
Agricultural land | 644.587 | 4.9 | 5191.2486 | 39.5 | 34.6 |
Forest | 3302.27 | 25.16 | 1576.431 | 12.01 | −13.15 |
Water | 79.7715 | 0.61 | 106.7616 | 0.81 | 0.2 |
Wetland | 562.757 | 4.29 | 42.7257 | 0.33 | −3.96 |
Bush land | 2147.58 | 16.36 | 1009.1025 | 7.69 | −8.36 |
Grassland | 224.251 | 1.71 | 9.4374 | 0.07 | −1.64 |
Bare land | 3950.95 | 30.1 | 2167.5091 | 15.66 | −29.94 |
Glacier | 10.5264 | 0.08 | 9.6413 | 0.92 | −0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amasi, A.I.M.; Wynants, M.; Kawala, R.A.; Sawe, S.F.; Blake, W.H.; Mtei, K.M. Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania. Earth 2021, 2, 764-780. https://doi.org/10.3390/earth2040045
Amasi AIM, Wynants M, Kawala RA, Sawe SF, Blake WH, Mtei KM. Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania. Earth. 2021; 2(4):764-780. https://doi.org/10.3390/earth2040045
Chicago/Turabian StyleAmasi, Aloyce I. M., Maarten Wynants, Remigius A. Kawala, Shovi F. Sawe, William H. Blake, and Kelvin M. Mtei. 2021. "Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania" Earth 2, no. 4: 764-780. https://doi.org/10.3390/earth2040045
APA StyleAmasi, A. I. M., Wynants, M., Kawala, R. A., Sawe, S. F., Blake, W. H., & Mtei, K. M. (2021). Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania. Earth, 2(4), 764-780. https://doi.org/10.3390/earth2040045