Localize the Impact of Global Greenhouse Gases Emissions under an Uncertain Future: A Case Study in Western Cape, South Africa
Abstract
:1. Introduction
2. Methods
2.1. Study Region
2.2. Data
3. Results and Discussions
3.1. Spatial–Temporal Patterns of Climate Metrics
3.2. Regional Trends of Various Climate Metrics
3.3. Potential Policy Implications
4. Conclusions
- Different climate metrics will respond differently to emissions scenarios. The projected simulation results reveal that temperature-related metrics are more sensitive to GHG emissions than water-related metrics as expected, as lower emissions can considerably alleviate climate vulnerability in Western Cape regions compared to business as usual.
- Climate change poses a localized effect on different regions in Western Cape. Districts closer to the south coast are more resilient to regional warming compared to inland areas, but less so in terms of water stress.
- A robust drying signal across the Western Cape region is likely to be seen in the near future if we continue doing business as usual (as seen in RCP 8.5). Efficient water-management practices and greenhouse-gas emissions reduction strategies are urgently needed to avoid more severe droughts such as the “Day-Zero” crisis in 2018, especially for the City of Cape Town and several other coastal regions within the Overberg and Eden district.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, J.; Moser, S.C. Individual understandings, perceptions, and engagement with climate change: Insights from in-depth studies across the world. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 547–569. [Google Scholar] [CrossRef]
- Haden, V.R.; Niles, M.T.; Lubell, M.; Perlman, J.; Jackson, L.E. Global and local concerns: What attitudes and beliefs motivate farmers to mitigate and adapt to climate change? PLoS ONE 2012, 7, e52882. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Talanow, K.; Topp, E.N.; Loos, J.; Martín-López, B. Farmers’ perceptions of climate change and adaptation strategies in South Africa’s Western Cape. J. Rural Stud. 2020, 81, 203–219. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. S. Afr. J. Sci. 2018, 114, 70–78. [Google Scholar] [CrossRef]
- Ziervogel, G.; New, M.; Archer van Garderen, E.; Midgley, G.; Taylor, A.; Hamann, R.; Stuart-Hill, S.; Myers, J.; Warburton, M. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 605–620. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R.M.; Chakwizira, J. Analysis of determinants of farm-level adaptation measures to climate change in Southern Africa. J. Dev. Agric. Econ. 2014, 6, 232–241. [Google Scholar]
- Bohatch, T. What’s Causing Cape Town’s Water Crisis? 2017. Available online: https://www.groundup.org.za/article/whats-causing-cape-towns-water-crisis/ (accessed on 17 January 2020).
- Ding, K.; Jonathan, M.G.; George, M. Hornberger. “Avoiding” day-zero”: A Testbed for Evaluating Integrated Food-energy-water Management in Cape Town, South Africa. In Proceedings of the IEEE Proceedings: 2019 Winter Simulation Conference, National Harbor, MD, USA, 8–11 December 2019; pp. 866–877. [Google Scholar]
- Naik, M.; Abiodun, B.J. Projected changes in drought characteristics over the Western Cape, South Africa. Meteorol. Appl. 2020, 27, e1802. [Google Scholar] [CrossRef] [Green Version]
- Pascale, S.; Kapnick, S.B.; Delworth, T.L.; Cooke, W.F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Acad. Natl. Sci. USA 2020, 117, 29495–29503. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Lehner, F.; Sanderson, B.M.; Xu, Y. Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett. 2015, 42, 8767–8774. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2. 6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 1–2, 33. [Google Scholar] [CrossRef] [Green Version]
- Meterlekamp, L. Commercial Agriculture in the Swartland: Investigating Emerging Trends towards More Sustainable Food Production. Maters’ Thesis, Stellenbosch University, Stellenbosch, South Africa, 2011. [Google Scholar]
- Directorate Statistics, Analysis, Economic, 2013. Abstract of Agricultural Statistics: 2013. Department of Agriculture, Forestry and Fisheries, Republic of South Africa (DAFF), Pretoria. Available online: https://www.daff.gov.za/docs/statsinfo/Abstact2013.pdf (accessed on 17 January 2020).
- Araujo, J.A.; Abiodun, B.J.; Crespo, O. Impacts of drought on grape yields in the Western Cape, South Africa. Theor. Appl. Climatol. 2016, 123, 117. [Google Scholar] [CrossRef]
- Midgley, G.F.; Chapman, R.A.; Hewitson, B.; Johnston, P.; de Wit, M.; Ziervogel, G.; Mukheibir, P.; van Niekerk, L.; Tadross, M.; van Wilgen, B.W.; et al. A Status Quo, Vulnerability and Adaptation Assessment of the Physical and Socio-Economic Effects of Climate Change in the Western Cape; Report to the Western Cape Government. Council for Scientific and Industrial Research, Report No. ENV-SC 2005-073; Stellenbosch: Cape Town, South Africa, 2005. [Google Scholar]
- Hurry, L.; Van Heerden, J. Southern Africa’s Weather Patterns: A Guide to the Interpretation of Synoptic Maps, 1st ed.; Via Afrika: Cape Town, South Africa, 1982. [Google Scholar]
- Dennis, I.; Dennis, R. Climate change vulnerability index for South African aquifers. Water SA 2012, 38, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Blamey, R.C.; Ramos, A.M.; Trigo, R.M.; Tomé, R.; Reason, C.J.C. The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. J. Hydrometeorol. 2017, 19, 127–142. [Google Scholar] [CrossRef]
- Statistics South Africa. Mid-Year Population Estimates. 2020. Available online: http://www.statssa.gov.za/publications/P0302/P03022020.pdf (accessed on 17 January 2020).
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Modeling Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Ma, T.; Tan, G.; Ayugi, B.; Nooni, I.K.; Alabdulkarim, A.; Tian, Y. Evaluation of the Rossby Centre Regional Climate Model Rainfall Simulations over West Africa using large-scale spatial and temporal statistical metrics. Atmosphere 2019, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Ogega, O.M.; Koske, J.; Kung’u, J.B.; Scoccimarro, E.; Endris, H.S.; Mistry, M.N. Heavy precipitation events over East Africa in a changing climate: Results from CORDEX RCMs. Clim. Dyn. 2020, 55, 993–1009. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 17 January 2021).
- Hornberger, G.M.; Wiberg, P.L.; Raffensperger, J.P.; D’Odorico, P. Elements of Physical Hydrology; JHU Press: Baltimore, MD, USA, 2014. [Google Scholar]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Milly, P.C.D. Climate, interseasonal storage of soil water, and the annual water balance. Adv. Water Res. 1994, 17, 19–24. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Diab, R. Recommendations for the energy efficiency technology landscape in South Africa. J. Energy South. Afr. 2018, 29, 84–86. [Google Scholar] [CrossRef] [Green Version]
- Taing, L.; Chang, C.C.; Pan, S.; Armitage, N.P. Towards a water secure future: Reflections on Cape Town’s Day Zero crisis. Urban Water J. 2019, 16, 530–536. [Google Scholar] [CrossRef]
- Ding, T.; Gunda, T.; Hornberger, G.M. Prominent Influence of Socioeconomic and Governance Factors on the Food-Energy-Water Nexus in Sub-Saharan Africa. Earth’s Future 2019, 7, 1071–1087. [Google Scholar] [CrossRef] [Green Version]
Domain | Resolution | Driving Model | Time Frequency | Downscaling Resolution | RCM Model | Ensemble | Variable | Experiment |
---|---|---|---|---|---|---|---|---|
AFR | 0.44 | MPI-M-MPI-ESM-LR | Monthly | V1 | RCA 4 | R1i1p1 | pr, tas, tasmax, evspsbl | Rcp26 |
Rcp45 | ||||||||
Rcp85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Ding, K.J. Localize the Impact of Global Greenhouse Gases Emissions under an Uncertain Future: A Case Study in Western Cape, South Africa. Earth 2021, 2, 111-123. https://doi.org/10.3390/earth2010007
He B, Ding KJ. Localize the Impact of Global Greenhouse Gases Emissions under an Uncertain Future: A Case Study in Western Cape, South Africa. Earth. 2021; 2(1):111-123. https://doi.org/10.3390/earth2010007
Chicago/Turabian StyleHe, Bowen, and Ke J. Ding. 2021. "Localize the Impact of Global Greenhouse Gases Emissions under an Uncertain Future: A Case Study in Western Cape, South Africa" Earth 2, no. 1: 111-123. https://doi.org/10.3390/earth2010007
APA StyleHe, B., & Ding, K. J. (2021). Localize the Impact of Global Greenhouse Gases Emissions under an Uncertain Future: A Case Study in Western Cape, South Africa. Earth, 2(1), 111-123. https://doi.org/10.3390/earth2010007