Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA)
Abstract
:1. Introduction
2. Geographical Description and Mapping
2.1. Study Area
2.2. Landslide Inventory
2.3. Environmental Variables
2.4. Modelling Technique
2.5. Calibration and Validation of the Models
2.6. Landslide Susceptibility Map
3. Results
3.1. Landslide Inventory
3.2. Calibration and Validation of the Models
3.3. Landslide Susceptibility Map
4. Discussion and Conclusions
- The MARS technique confirms its ability in modelling debris flow susceptibility in volcanic steep slopes, being able to predict the locations of debris flows with excellent accuracy (AUC = 0.80) by using a set of environmental variables that can be extracted from available thematic maps and a DEM with 10-m horizontal resolution as predictors;
- The ability of MARS to predict the spatial distribution of debris flows is stable when changes of the learning and validation samples are performed (AUC Std. dev. = 0.01);
- The cut-off dependent metrics revealed that MARS models produce a large number of false positives, and thus their ability to identify stable cells is moderate (specificity = 0.66);
- MARS exhibits the same predictive skill in the San Vicente area as that achieved in other study areas located in El Salvador and Colombia;
- MARS modelling revealed that slope angle, elevation, lithology, and landform classification are the most important predictors of the debris flows occurred in the study area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, W.I.; Bommer, J.J.; López, D.L.; Carr, M.J.; Major, J.J. Natural Hazards in El Salvador; Geological Society of America Boulder: Boulder, CO, USA, 2004. [Google Scholar]
- Depresión Tropical 12E/Sistema Depresionario Sobre El Salvador y Otros Eventos Extremos del Pacífico—El Salvador. Available online: https://reliefweb.int/report/el-salvador/depresión-tropical-12e-sistema-depresionario-sobre-el-salvador-y-otros-eventos (accessed on 16 January 2020).
- Crone, A.J.; Baum, R.L.; Lidke, D.J.; Sather, D.N.; Bradley, L.-A.; Tarr, A.C. Landslides Induced by Hurricane Mitch in El Salvador—An Inventory and Descriptions of Selected Features; Geological Society of America: Boulder, CO, USA, 2001. [Google Scholar]
- Larsen, M.C.; Wieczorek, G.F. Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999. Z. Fur Geomorphol. Suppl. 2006, 145, 147–175. [Google Scholar]
- Larsen, M.C. Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Adv. Geosci. 2008. [Google Scholar] [CrossRef] [Green Version]
- Avelar, A.S.; Netto, A.L.C.; Lacerda, W.A.; Becker, L.B.; Mendonça, M.B. Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. In Landslide Science and Practice: Global Environmental Change; Avelar, A.S., Netto, A.L.C., Lacerda, W.A., Becker, L.B., Mendonça, M.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Brabb, E. Innovative Approaches for Landslide Hazard Evaluation. In Proceedings of the IV International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; pp. 307–323. [Google Scholar]
- Conoscenti, C.; Rotigliano, E.; Cama, M.; Caraballo-Arias, N.A.; Lombardo, L.; Agnesi, V. Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology 2016, 261, 222–235. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. EarthSci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Carrara, A.; Agnesi, V.; Macaluso, T.; Monteleone, S.; Pipitone, G. Slope movements induced by the Southern Italy earthquake of November 1980. IAEG 1986, 2, 237–250. [Google Scholar]
- Agnesi, V.; Carrara, A.; Macaluso, T.; Monteleone, S.; Pipitone, G.; Sorriso-Valvo, M. Elementi tipologici e morfologici dei fenomeni di instabilità dei versanti indotti dal sisma del 1980 (alta Valle del Sele). Geol. Appl. e Idrogeol. 1983, 18, 309–341. [Google Scholar]
- Chung, C.-J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Chung, C.J.; Fabbri, A.G. Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique. Geomorphology 2008, 94, 438–452. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Clerici, A.; Perego, S.; Tellini, C.; Vescovi, P. A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: The Baganza valley case study (Italian Northern Apennines). Environ. Geol. 2006, 50, 941–961. [Google Scholar] [CrossRef]
- Conoscenti, C.; Di Maggio, C.; Rotigliano, E. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 2008. [Google Scholar] [CrossRef]
- Costanzo, D.; Rotigliano, E.; Irigaray, C.; Jiménez-Perálvarez, J.D.; Chacón, J. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: Application to the river Beiro basin (Spain). Nat. Hazards Earth Syst. Sci. 2012, 12, 327–340. [Google Scholar] [CrossRef]
- Rotigliano, E.; Cappadonia, C.; Conoscenti, C.; Costanzo, D.; Agnesi, V. Slope units-based flow susceptibility model: Using validation tests to select controlling factors. Nat. Hazards 2012, 61, 143–153. [Google Scholar] [CrossRef]
- Verstappen, H.T. Geomorphology of the Agri valley, southern Italy. ITC J. 1983, 4, 291–301. [Google Scholar]
- Smith, D.M.; Oommen, T.; Bowman, L.J.; Gierke, J.S.; Vitton, S.J. Hazard assessment of rainfall-induced landslides: A case study of San Vicente volcano in central El Salvador). Nat. Hazards 2015, 75, 2291–2310. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides Investigation and Mitigation, Transportation Research Board, Special Report No. 247; Turner, A.K., Shuster, R.L., Eds.; National Academic Press: Washington. DC, USA, 1996; pp. 36–75. Available online: http://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247.pdf (accessed on 16 January 2020).
- Sassa, K.; Wang, G.H. Mechanism of landslide-triggered debris flows: Liquefaction phenomena due to the undrained loading of torrent deposits. In Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2007; pp. 81–104. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Gutiérrez, Á.G.; Schnabel, S.; Lavado Contador, J.F. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol. Modell. 2009, 220, 3630–3637. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: Advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Conoscenti, C.; Agnesi, V.; Cama, M.; Caraballo-Arias, N.A.; Rotigliano, E. Assessment of Gully Erosion Susceptibility Using Multivariate Adaptive Regression Splines and Accounting for Terrain Connectivity. L. Degrad. Dev. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Conoscenti, C.; Rotigliano, E. Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models. Geomorphology 2020, 359. [Google Scholar] [CrossRef]
- Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 2018, 330, 65–78. [Google Scholar] [CrossRef]
- Rotigliano, E.; Martinello, C.; Agnesi, V.; Conoscenti, C. Evaluation of debris flow susceptibility in El Salvador (CA): A comparisobetween multivariate adaptive regression splines (MARS) and binary logistic regression (BLR). Hungarian Geogr. Bull. 2018, 67, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Rotigliano, E.; Martinello, C.; Hernandéz, M.A.; Agnesi, V.; Conoscenti, C. Predicting the landslides triggered by the 2009 96E/Ida tropical storms in the Ilopango caldera area (El Salvador, CA): Optimizing MARS-based model building and validation strategies. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Vargas-Cuervo, G.; Rotigliano, E.; Conoscenti, C. Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology 2019, 339, 31–43. [Google Scholar] [CrossRef]
- Carrara, A.; Crosta, G.; Frattini, P. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 2008. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Reichenbach, P.; Guzzetti, F.; Rossi, M.; Poesen, J. Combined landslide inventory and susceptibility assessment based on different mapping units: An example from the Flemish Ardennes, Belgium. Nat. Hazards Earth Syst. Sci. 2009. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, D.; Chacón, J.; Conoscenti, C.; Irigaray, C.; Rotigliano, E. Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides 2014, 11, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, L.; Cama, M.; Maerker, M.; Rotigliano, E. A test of transferability for landslides susceptibility models under extreme climatic events: Application to the Messina 2009 disaster. Nat. Hazards 2014, 74, 1951–1989. [Google Scholar] [CrossRef]
- Cama, M.; Conoscenti, C.; Lombardo, L.; Rotigliano, E. Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: A test in the Giampilieri catchment (Sicily, Italy). Environ. Earth Sci. 2016, 75, 1–21. [Google Scholar] [CrossRef]
- Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M. USGS Open-File Report 01-367: Volcano-Hazard Zonation for San Vicente Volcano, El Salvador. Available online: https://pubs.usgs.gov/of/2001/0367/ (accessed on 16 November 2020).
- Avila, L.A.; Cangialosi, J. Tropical Cyclone Report: Hurricane Ida; National Hurricane Center: Miami, FL, USA, 2010. Available online: https://www.nhc.noaa.gov/data/tcr/AL112009_Ida.pdf (accessed on 16 November 2020).
- Avila, R. Síntesis de los Informes de Evaluación Técnica de las Lluvias del 7 y 8 de Noviembre 2009 en El Salvador: Análisis del impacto Físico Natural y Vulnerabilidad Socio Ambiental; report Comisión Técnico Científica; Coordina el Ministerio de Medio Ambiente y Recursos Naturales, MARN: San Salvador, El Salvador, 2010; Available online: https://www.academia.edu/42170439/_Síntesis_de_los_informes_de_evaluación_técnica_de_las_lluvias_del_7_y_8_de_noviembre_2009_en_El_Salvador_Análisis_del_impacto_físico_natural_y_vulnerabilidad_socio_ambiental_ (accessed on 16 November 2020).
- Rotigliano, E.; Agnesi, V.; Cappadonia, C.; Conoscenti, C.; Agnesi, V. The role of the diagnostic areas in the assessment of landslide susceptibility models: A test in the sicilian chain. Nat. Hazards 2011, 58, 981–999. [Google Scholar] [CrossRef]
- Cama, M.; Lombardo, L.; Conoscenti, C.; Agnesi, V.; Rotigliano, E. Predicting storm-triggered debris flow events: Application to the 2009 Ionian Peloritan disaster (Sicily, Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 1785–1806. [Google Scholar] [CrossRef] [Green Version]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Weber, H.S.; Wiesemann, G.; Lorenz, W.; Schmidt-Thomé, M. Mapa Geológico de la República de El Salvador/América Central = Geologische Karte der Republik El Salvador/Mittelamerika. Available online: https://nla.gov.au/nla.obj-726140200/view (accessed on 16 November 2020).
- Ohlmacher, G.C. Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng. Geol. 2007, 91, 117–134. [Google Scholar] [CrossRef]
- Allison, P.D. Logistic Regression Using the SAS System: Theory and Application; SAS Institute Inc.: Cary, NC, USA. Available online: http://www.sciepub.com/reference/248083 (accessed on 16 November 2020).
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis: A Global Perspective: Pearson Education International; Pearson Education: Upper Saddle River, NJ, USA; London, UK, 2010. [Google Scholar]
- Keith, T.Z. Multiple Regression and Beyond; Routledge: Milton Park, Abingdon, UK, 2014. [Google Scholar]
- Naimi, B. Uncertainty analysis for species distribution models. R Softw. Packag. 2015. [Google Scholar] [CrossRef]
- Martinello, C.; Cappadonia, C.; Conoscenti, C.; Agnesi, V.; Rotigliano, E. Optimal slope units partitioning in landslide susceptibility mapping. J. Maps 2020. [Google Scholar] [CrossRef]
- Milborrow, S. Notes on the Earth Package. 2020. Available online: http://www.milbo.org/doc/earth-notes.pdf (accessed on 16 November 2020).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; ISBN 9780471722144. [Google Scholar]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E. Improving transferability strategies for debris flow susceptibility assessmentApplication to the Saponara and Itala catchments (Messina, Italy). Geomorphology 2017, 288, 52–65. [Google Scholar] [CrossRef]
COD | TYPE | DESCRIPTION | % Presence of the Factor in the Area |
---|---|---|---|
geo.1 | Soft rocks | intermediate basic effusive rocks and subordinate pyroclastites | 23.00% |
geo.2 | Hard rocks | intermediate basic effusive rocks and subordinate pyroclastites | 20.84% |
geo.3 | Medium rocks | acid effusive and acid intermediate rocks | 0.80% |
geo.4 | Very soft soil | Tierra Blanca: acidic pyroclastites and subordinate volcanic epiclastites and acid effusive rocks | 17.25% |
geo.5 | Soft soil | Quaternary sedimentary deposits | 0.91% |
geo.6 | Hard soil | acid pyroclastic rocks, volcanic epiclastites | 29.77% |
geo.7 | Medium soil | volcanic epiclastites and pyroclastites, locally effusive basic-intermediate rocks | 7.42% |
COD | TYPE | % Presence of the Factor in the Area | COD | TYPE | % presence of the Factor in the Area |
---|---|---|---|---|---|
use.1 | Urban areas | 3.13% | lcl.0 | Streams | 4.86% |
use.2 | Woods | 5.05% | lcl.1 | Midslope drainages | 7.88% |
use.3 | Annual crops | 17.61% | lcl.2 | Upland drainages | 0.59% |
use.4 | Mixed crops | 20.11% | lcl.3 | Valleys | 5.39% |
use.5 | Permanent crops | 45.96% | lcl.4 | Plains | 18.21% |
use.6 | Wetlands | 0.00% | lcl.5 | Open slopes | 42.47% |
use.7 | Mangroves | 0.00% | lcl.6 | Upper slopes | 7.12% |
use.8 | Minings | 0.00% | lcl.7 | Local ridges | 0.41% |
use.9 | Pastures | 1.73% | lcl.8 | Midslope ridges | 8.98% |
use.10 | Rivers | 0.24% | lcl.9 | High ridges | 4.08% |
use.11 | Shrub vegetations | 6.18% |
VARIABLES | VIF |
---|---|
ELE | 1.308 |
PLC | 1.491 |
PRC | 1.276 |
SLO | 2.013 |
TWI | 2.205 |
NORTH | 1.003 |
EAST | 1.035 |
MODELS | N° PIXELS | CUT-OFF | POSITIVE CASES | NEGATIVE CASES | TP | FP | TN | FN |
Balanced | 2488 | 0.46 | 1244 | 1244 | 985 | 417 | 827 | 259 |
All-area | 2,794,399 | 0.46 | 4975 | 2,789,424 | 3992 | 933,454 | 1,855,970 | 983 |
MODELS | ACCURACY | SENSITIVITY | SPECIFICITY | PPV | NPV | AUC | ||
Balanced | 0.73 | 0.79 | 0.66 | 0.70 | 0.76 | 0.80 | ||
All-area | 0.67 | 0.80 | 0.67 | 0.00 | 0.99 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercurio, C.; Martinello, C.; Rotigliano, E.; Argueta-Platero, A.A.; Reyes-Martínez, M.E.; Rivera-Ayala, J.Y.; Conoscenti, C. Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA). Earth 2021, 2, 66-85. https://doi.org/10.3390/earth2010005
Mercurio C, Martinello C, Rotigliano E, Argueta-Platero AA, Reyes-Martínez ME, Rivera-Ayala JY, Conoscenti C. Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA). Earth. 2021; 2(1):66-85. https://doi.org/10.3390/earth2010005
Chicago/Turabian StyleMercurio, Claudio, Chiara Martinello, Edoardo Rotigliano, Abel Alexei Argueta-Platero, Mario Ernesto Reyes-Martínez, Jacqueline Yamileth Rivera-Ayala, and Christian Conoscenti. 2021. "Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA)" Earth 2, no. 1: 66-85. https://doi.org/10.3390/earth2010005
APA StyleMercurio, C., Martinello, C., Rotigliano, E., Argueta-Platero, A. A., Reyes-Martínez, M. E., Rivera-Ayala, J. Y., & Conoscenti, C. (2021). Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA). Earth, 2(1), 66-85. https://doi.org/10.3390/earth2010005