# Bidirectional Charging for BEVs with Reconfigurable Battery Systems via a Grid-Parallel Proportional-Resonant Controller

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Modular Multilevel Inverters

#### 2.2. Bidirectional Charging for Battery Electric Vehicles

#### 2.3. Grid-Parallel Control of an RBS Using a PR Controller

## 3. Simulation and Measurement Setup

#### 3.1. Simulation Setup

#### 3.2. Measurement Setup

#### 3.2.1. Laboratory Setup

#### 3.2.2. Full Power Setup

## 4. Results

#### 4.1. Simulation Results

#### 4.2. Measurement Setup Results

## 5. Discussion

## 6. Conclusions and Future Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

AC | Alternating Current |

BEV | Battery Electric Vehicle |

BMS | Battery Management System |

DAB | Dual-Active Bridge |

DC | Direct Current |

HV | High Voltage |

MLI | Multilevel Inverter |

MOSFET | Metal-Oxide Semiconductor Field Effect Transistor |

NMC | Nickel-Manganese-Cobalt-Oxide |

OBC | Onboard Charger |

PF | Power Factor |

PFC | Power Factor Correction |

PLL | Phase-Locked Loop |

PI | Proportional-Integral |

PR | Proportional-Resonant |

RBS | Reconfigurable Battery System |

SoC | State of Charge |

THD | Total Harmonic Distortion |

V2G | Vehicle to Grid |

## References

- Edenhofer, O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3. [Google Scholar]
- Buberger, J.; Kersten, A.; Kuder, M.; Eckerle, R.; Weyh, T.; Thiringer, T. Total CO
_{2}-equivalent life-cycle emissions from commercially available passenger cars. Renew. Sustain. Energy Rev.**2022**, 159, 112158. [Google Scholar] [CrossRef] - Shi, X.; Pan, J.; Wang, H.; Cai, H. Battery electric vehicles: What is the minimum range required? Energy
**2019**, 166, 352–358. [Google Scholar] [CrossRef] - Ru, Y.; Kleissl, J.; Martinez, S. Storage size determination for grid-connected photovoltaic systems. IEEE Trans. Sustain. Energy
**2012**, 4, 68–81. [Google Scholar] [CrossRef] - Greene, D.L.; Liu, J.; Khattak, A.J.; Wali, B.; Hopson, J.L.; Goeltz, R. How does on-road fuel economy vary with vehicle cumulative mileage and daily use? Transp. Res. Part D Transp. Environ.
**2017**, 55, 142–161. [Google Scholar] [CrossRef] - Khaligh, A.; D’Antonio, M. Global trends in high-power on-board chargers for electric vehicles. IEEE Trans. Veh. Technol.
**2019**, 68, 3306–3324. [Google Scholar] [CrossRef] - Buberger, J.; Estaller, J.; Grupp, W.; Schwitzgebel, F.; Wiedenmann, A.; Mashayekh, A.; Kuder, M.; Eckerle, R.; Weyh, T. AC and DC Charging for Electric Vehicles with a Battery Modular Multilevel Management (BM3) Converter System. In Proceedings of the PCIM Europe 2022; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 10–12 May 2022; pp. 1–8. [Google Scholar]
- Yuan, J.; Dorn-Gomba, L.; Callegaro, A.D.; Reimers, J.; Emadi, A. A review of bidirectional on-board chargers for electric vehicles. IEEE Access
**2021**, 9, 51501–51518. [Google Scholar] [CrossRef] - Högerl, T.; Buberger, J.; Schwitzgebel, F.; Obkricher, L.; Estaller, J.; Hohenegger, M.; Kersten, A.; Kuder, M.; Eckerle, R.; Weyh, T. Battery Emulation for Battery Modular Multilevel Management (BM3) Converters and Reconfigurable Batteries with Series, Parallel and Bypass Function. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–8. [Google Scholar]
- Lesnicar, A.; Marquardt, R. An innovative modular multilevel converter topology suitable for a wide power range. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003; Volume 3. [Google Scholar]
- Leite, R.S.; Afonso, J.L.; Monteiro, V. A novel multilevel bidirectional topology for on-board EV battery chargers in smart grids. Energies
**2018**, 11, 3453. [Google Scholar] [CrossRef] - Chaudhary, S.K.; Cupertino, A.F.; Teodorescu, R.; Svensson, J.R. Benchmarking of modular multilevel converter topologies for ES-STATCOM realization. Energies
**2020**, 13, 3384. [Google Scholar] [CrossRef] - Kuder, M.; Schneider, J.; Kersten, A.; Thiringer, T.; Eckerle, R.; Weyh, T. Battery modular multilevel management (bm3) converter applied at battery cell level for electric vehicles and energy storages. In Proceedings of the PCIM Europe Digital Days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–8 July 2020; pp. 1–8. [Google Scholar]
- Jiang, J.; Bao, Y.; Wang, L.Y. Topology of a bidirectional converter for energy interaction between electric vehicles and the grid. Energies
**2014**, 7, 4858–4894. [Google Scholar] [CrossRef] - Dini, P.; Saponara, S. Electro-thermal model-based design of bidirectional on-board chargers in hybrid and full electric vehicles. Electronics
**2022**, 11, 112. [Google Scholar] [CrossRef] - Tashakor, N.; Farjah, E.; Ghanbari, T. A bidirectional battery charger with modular integrated charge equalization circuit. IEEE Trans. Power Electron.
**2016**, 32, 2133–2145. [Google Scholar] [CrossRef] - Eull, M.; Zhou, L.; Jahnes, M.; Preindl, M. Bidirectional nonisolated fast charger integrated in the electric vehicle traction drivetrain. IEEE Trans. Transp. Electrif.
**2021**, 8, 180–195. [Google Scholar] [CrossRef] - Theliander, O.; Kersten, A.; Kuder, M.; Han, W.; Grunditz, E.A.; Thiringer, T. Battery modeling and parameter extraction for drive cycle loss evaluation of a modular battery system for vehicles based on a cascaded H-bridge multilevel inverter. IEEE Trans. Ind. Appl.
**2020**, 56, 6968–6977. [Google Scholar] [CrossRef] - Bughneda, A.; Salem, M.; Richelli, A.; Ishak, D.; Alatai, S. Review of multilevel inverters for PV energy system applications. Energies
**2021**, 14, 1585. [Google Scholar] [CrossRef] - Vemuganti, H.P.; Sreenivasarao, D.; Ganjikunta, S.K.; Suryawanshi, H.M.; Abu-Rub, H. A survey on reduced switch count multilevel inverters. IEEE Open J. Ind. Electron. Soc.
**2021**, 2, 80–111. [Google Scholar] [CrossRef] - Steinstraeter, M.; Buberger, J.; Minnerup, K.; Trifonov, D.; Horner, P.; Weiss, B.; Lienkamp, M. Controlling cabin heating to improve range and battery lifetime of electric vehicles. eTransportation
**2022**, 13, 100181. [Google Scholar] [CrossRef] - Mashayekh, A.; Kersten, A.; Kuder, M.; Estaller, J.; Khorasani, M.; Buberger, J.; Eckerle, R.; Weyh, T. Proactive soc balancing strategy for battery modular multilevel management (bm3) converter systems and reconfigurable batteries. In Proceedings of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium, 6–10 September 2021. [Google Scholar]
- Kersten, A.; Theliander, O.; Grunditz, E.A.; Thiringer, T.; Bongiorno, M. Battery loss and stress mitigation in a cascaded h-bridge multilevel inverter for vehicle traction applications by filter capacitors. IEEE Trans. Transp. Electrif.
**2019**, 5, 659–671. [Google Scholar] [CrossRef] - Wong, N.; Kazerani, M. A review of bidirectional on-board charger topologies for plugin vehicles. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–6. [Google Scholar]
- Li, H.; Wang, S.; Zhang, Z.; Tang, J.; Ren, X.; Chen, Q. A SiC bidirectional LLC on-board charger. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 3353–3360. [Google Scholar]
- Dubarry, M.; Devie, A.; McKenzie, K. Durability and reliability of electric vehicle batteries under electric utility grid operations: Bidirectional charging impact analysis. J. Power Sources
**2017**, 358, 39–49. [Google Scholar] [CrossRef] - Schwenk, K.; Meisenbacher, S.; Briegel, B.; Harr, T.; Hagenmeyer, V.; Mikut, R. Integrating battery aging in the optimization for bidirectional charging of electric vehicles. IEEE Trans. Smart Grid
**2021**, 12, 5135–5145. [Google Scholar] [CrossRef] - Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3. eTransportation
**2022**, 12, 100167. [Google Scholar] [CrossRef] - Huang, X.; Meng, J.; Liu, W.; Ru, F.; Duan, C.; Xu, X.; Stroe, D.I.; Teodorescu, R. Lithium-Ion Battery Lifetime Extension With Positive Pulsed Current Charging. IEEE Trans. Ind. Electron.
**2023**, 1–8. [Google Scholar] [CrossRef] - Teodorescu, R.; Blaabjerg, F.; Liserre, M.; Loh, P.C. Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc.-Electr. Power Appl.
**2006**, 153, 750–762. [Google Scholar] [CrossRef] - Helling, F.; Glück, J.; Singer, A.; Weyh, T.; Pfisterer, H.J. The AC Battery—A Novel Approach for Integrating Batteries into AC Systems. Int. J. Electr. Power Energy Syst.
**2018**, 104, 150–158. [Google Scholar] [CrossRef] - Helling, F.; Kuder, M.; Singer, A.; Schmid, S.; Weyh, T. Low Voltage Power Supply in Modular Multilevel Converter based Split Battery Systems for Electrical Vehicles. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. P.1–P.10. [Google Scholar]
- Kersten, A.; Kuder, M.; Grunditz, E.; Geng, Z.; Wikner, E.; Thiringer, T.; Weyh, T.; Eckerle, R. Inverter and Battery Drive Cycle Efficiency Comparisons of CHB and MMSP Traction Inverters for Electric Vehicles. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. P.1–P.12. [Google Scholar] [CrossRef]
- Buberger, J.; Kersten, A.; Kuder, M.; Singer, A.; Mashayekh, A.; Estaller, J.; Thiringer, T.; Eckerle, R.; Weyh, T. Charging strategy for battery electric vehicles with a battery modular multilevel management (bm3) converter system using a pr controller. In Proceedings of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium, 6–10 September 2021. [Google Scholar]
- Estaller, J.; Kersten, A.; Kuder, M.; Thiringer, T.; Eckerle, R.; Weyh, T. Overview of Battery Impedance Modeling Including Detailed State-of-the-Art Cylindrical 18650 Lithium-Ion Battery Cell Comparisons. Energies
**2022**, 15, 3822. [Google Scholar] [CrossRef] - Abuagreb, M.; Beleed, H.; Johnson, B.K. Energy management of a battery combined with PV generation. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019; pp. 1–6. [Google Scholar]
- Sukumar, S.; Mokhlis, H.; Mekhilef, S.; Naidu, K.; Karimi, M. Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid. Energy
**2017**, 118, 1322–1333. [Google Scholar] [CrossRef] - IEEE P519/D5.1; IEEE Draft Standard for Harmonic Control in Electric Power Systems. IEEE: Piscataway Township, NJ, USA, 2021; pp. 1–30.

**Figure 2.**MATLAB/Simulink simulation structure. The system resembles the hardware setup under ideal conditions.

**Figure 3.**Hardware setup to test the system in a realistic operating scenario. One slave module and the battery emulators are shown in this setup.

**Figure 4.**Hardware setup to achieve full power during tests. The system is connected to an electronic AC load and real batteries are used within the slave modules. Eight slave modules are included to reach the full grid voltage.

**Figure 5.**Grid voltage, system voltage and system current during grid-parallel charging operations with 28 $\mathrm{V}$ RMS, 4 $\mathrm{A}$ RMS and 50 $\mathrm{Hz}$. Transient oscillations were not allowed.

**Figure 6.**Grid voltage, system voltage and system current during grid-parallel operation. Start-up with 28 V RMS, 0 $\mathrm{A}$ RMS and 50 Hz at 50 $\mathrm{m}$$\mathrm{s}$. Reference current increased to 4 $\mathrm{A}$ RMS at 90 $\mathrm{m}$$\mathrm{s}$.

**Figure 7.**System parameters during grid-parallel operation with a ${V}_{\mathrm{grid}}$ of 56 $\mathrm{V}$ RMS, ${I}_{\mathrm{sys}}$ of 4 $\mathrm{A}$ RMS and a grid frequency ${f}_{\mathrm{grid}}$ of 50 $\mathrm{Hz}$. Grid voltage (green), inverter voltage (yellow), inverter current (red) and current of a single battery cell (blue).

**Figure 8.**System parameters at operation startup with a ${V}_{\mathrm{grid}}$ of 56 $\mathrm{V}$ RMS, ${I}_{\mathrm{sys}}$ of 0 $\mathrm{A}$ RMS and ${f}_{\mathrm{grid}}$ of 50 $\mathrm{Hz}$. Grid voltage (green), inverter voltage (yellow), inverter current (red) and current of a single battery cell (blue).

**Figure 9.**System parameters at operation with a grid voltage of ${V}_{\mathrm{grid}}$ 230 $\mathrm{V}$ RMS, a system charging current ${I}_{\mathrm{sys}}$ of 7 $\mathrm{A}$ RMS and a grid frequency ${f}_{\mathrm{grid}}$ of 50 $\mathrm{Hz}$. Grid voltage (yellow), system voltage (green) and system current (red).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Buberger, J.; Hohenegger, M.; Estaller, J.; Wiedenmann, A.; Grupp, W.; Bliemetsrieder, W.; Kuder, M.; Lesnicar, A.; Weyh, T.
Bidirectional Charging for BEVs with Reconfigurable Battery Systems via a Grid-Parallel Proportional-Resonant Controller. *Electricity* **2023**, *4*, 171-184.
https://doi.org/10.3390/electricity4020011

**AMA Style**

Buberger J, Hohenegger M, Estaller J, Wiedenmann A, Grupp W, Bliemetsrieder W, Kuder M, Lesnicar A, Weyh T.
Bidirectional Charging for BEVs with Reconfigurable Battery Systems via a Grid-Parallel Proportional-Resonant Controller. *Electricity*. 2023; 4(2):171-184.
https://doi.org/10.3390/electricity4020011

**Chicago/Turabian Style**

Buberger, Johannes, Michael Hohenegger, Julian Estaller, Andreas Wiedenmann, Wolfgang Grupp, Wolfgang Bliemetsrieder, Manuel Kuder, Anton Lesnicar, and Thomas Weyh.
2023. "Bidirectional Charging for BEVs with Reconfigurable Battery Systems via a Grid-Parallel Proportional-Resonant Controller" *Electricity* 4, no. 2: 171-184.
https://doi.org/10.3390/electricity4020011