Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors
Abstract
:1. Introduction
2. Mathematical Model
2.1. Finite Element Formulation
2.2. Equivalent Circuit
3. Results
3.1. Induced Current and Voltage in Absence of Mitigation Measures
3.2. Cylindrical Mitigation Wires
3.3. Square Mitigation Wires
3.4. Sheet Mitigation Conductor
4. Discussion
4.1. Induced Current and Voltage in Absence of Mitigation Measures
4.2. Cylindrical Mitigation Wires
4.3. Square Mitigation Wires
4.4. Sheet Mitigation Conductor
4.5. Local Mitigation Rate Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEEE Guide for Evaluating AC Interference on Linear Facilities Co-Located Near Transmission Lines. IEEE Std. 2020, 1–49. [CrossRef]
- Lucca, G. AC interference from a faulty power line on nearby buried pipelines: Influence of the surface layer soil. IET Sci. Meas. Technol. 2020, 14, 225–232. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y.; Gole, A.; Woodford, D.; Han, M.; Xiao, X. Analysis of coupling effects on overhead VSC-HVDC transmission lines from AC lines with shared right of way. IEEE Trans. Power Deliv. 2010, 25, 2976–2986. [Google Scholar] [CrossRef]
- CIGRE. Guide on the Influence of High Voltage AC Power Systems on Metallic Pipelines; Technical Report; Cigré Working Group 36.02: Paris, France, 1995; pp. 1–135. [Google Scholar]
- Dabkowski, J. How to predict and mitigate A. C. voltages on buried pipelines. Pipeline Gas J. 1979, 206, 19–21. [Google Scholar]
- Adedeji, K.; Ponnle, A.; Abe, B.; Jimoh, A.; Abu-Mahfouz, A.; Hamam, Y. A review of the effect of ac/dc interference on corrosion and cathodic protection potentials of pipelines. Int. Rev. Electr. Eng. 2018, 13, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Mariscotti, A. Induced Voltage Calculation in Electric Traction Systems: Simplified Methods, Screening Factors, and Accuracy. IEEE Trans. Intell. Transp. Syst. 2011, 12, 201–210. [Google Scholar] [CrossRef]
- Barthold, L.; Finney, W.; Lambert, E.; Skelton, H.; Schlomann, R.; Zaffanella, L.; Williams, P.; Clark, C.; Hubbard, D.; Delaplace, L. Electromagnetic effects of overhead transmission lines practical problems, safeguards, and methods of calculation. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 892–904. [Google Scholar] [CrossRef]
- Dushimimana, G.; Simiyu, P.; Ndayishimiye, V.; Niringiyimana, E.; Bikorimana, S. Induced electromagnetic field on underground metal pipelines running parallel to nearby high voltage AC power lines. E3S Web Conf. 2019, 107, 02004. [Google Scholar] [CrossRef]
- Lucca, G. AC interference from faulty power cables on buried pipelines: A two-step approach. IET Sci. Meas. Technol. 2021, 15, 25–34. [Google Scholar] [CrossRef]
- Tleis, N. Power Systems Modelling and Fault Analysis; Elsevier Ltd.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Dawalibi, F.P.; Southey, R.D. Analysis of electrical interference from power lines to gas pipelines. I. Computation methods. IEEE Trans. Power Deliv. 1989, 4, 1840–1846. [Google Scholar] [CrossRef]
- Chrysostomou, D.; Dimitriou, A.; Kokkinos, N.; Charalambous, C. Short-term electromagnetic interference on a buried gas pipeline caused by critical fault events of a wind park: A realistic case study. IEEE Trans. Ind. Appl. 2020, 56, 1162–1170. [Google Scholar] [CrossRef]
- Kopsidas, K.; Cotton, I. Induced voltages on long aerial and buried pipelines due to transmission line transients. IEEE Trans. Power Deliv. 2008, 23, 1535–1543. [Google Scholar] [CrossRef]
- Micu, D.D.; Christoforidis, G.C.; Czumbil, L. AC interference on pipelines due to double circuit power lines: A detailed study. Electr. Power Syst. Res. 2013, 103, 1–8. [Google Scholar] [CrossRef]
- Christoforidis, G.C.; Labridis, D.P.; Dokopoulos, P.S. Inductive interference on pipelines buried in multilayer soil due to magnetic fields from nearby faulted power lines. IEEE Trans. Electromagn. Compat. 2005, 47, 254–262. [Google Scholar] [CrossRef]
- Zhu, M.; Yuan, Y.; Yin, S.; Yu, G.; Guo, S.; Huang, Y.; Du, C. Corrosion behavior of pipeline steel with different microstructures under AC interference in acid soil simulation solution. J. Mater. Eng. Perform. 2019, 28, 1698–1706. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, N.; Zhou, S.; Li, S.; Wang, H. Effects of electromagnetic interference and crevice on corrosion of natural gas pipelines. IOP Conference Series: Earth and Environmental Science. IOP Publ. 2021, 675, 012061. [Google Scholar]
- Chen, L.; Du, Y.; Liang, Y.; Li, J. Research on corrosion behaviour of X65 pipeline steel under dynamic AC interference. Corros. Eng. Sci. Technol. 2021, 56, 219–229. [Google Scholar] [CrossRef]
- Gouda, O.; Dein, A.; El-Gabalawy, M. Effect of electromagnetic field of overhead transmission lines on the metallic gas pipe-lines. Electr. Power Syst. Res. 2013, 103, 129–136. [Google Scholar] [CrossRef]
- CIGRE. AC Corrosion on Metallic Pipelines Due to Interference from AC Power Lines—Phenomenon, Modelling and Countermeasures; Technical Report; Cigré Working Group C4.2.02: Paris, France, 2006; pp. 1–110. [Google Scholar]
- Chuco Paucar, B.; Roel Ortiz, J.L.; Pereira Pinto, J.O.; Koltermann, P.I. Induced voltage on gas pipeline with angle between a transmission line. In Proceedings of the 2007 IEEE Lausanne POWERTECH, Lausanne, Switzerland, 1–5 July 2007; pp. 796–800. [Google Scholar]
- Popoli, A.; Sandrolini, L.; Cristofolini, A. Inductive coupling on metallic pipelines: Effects of a nonuniform soil resistivity along a pipeline-power line corridor. Electr. Power Syst. Res. 2020, 189, 106621. [Google Scholar] [CrossRef]
- Popoli, A.; Sandrolini, L.; Cristofolini, A. Comparison of Screening Configurations for the Mitigation of Voltages and Currents Induced on Pipelines by HVAC Power Lines. Energies 2021, 14, 3855. [Google Scholar] [CrossRef]
- Popoli, A.; Cristofolini, A.; Sandrolini, L. A numerical model for the calculation of electromagnetic interference from power lines on nonparallel underground pipelines. Math. Comput. Simul. 2021, 183, 221–233. [Google Scholar] [CrossRef]
- Popoli, A.; Sandrolini, L.; Cristofolini, A. A quasi-3D approach for the assessment of induced AC interference on buried metallic pipelines. Int. J. Electr. Power Energy Syst. 2019, 106, 538–545. [Google Scholar] [CrossRef]
- Steele, C.W. Numerical Computation of Electric and Magnetic Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Popoli, A.; Sandrolini, L.; Cristofolini, A. Finite Element Analysis of Mitigation Measures for AC Interference on Buried Pipelines. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hayashi, T.; Mizuno, Y.; Naito, K. Study on Transmission-Line Arresters for Tower with High Footing Resistance. IEEE Trans. Power Deliv. 2008, 23, 2456–2460. [Google Scholar] [CrossRef]
- Yadee, P.; Premrudeepreechacharn, S. Analysis of Tower Footing Resistance Effected Back Flashover Across Insulator in a Transmission System. In Proceedings of the International Conference on Power Systems, Lyon, France, 4–7 June 2007. [Google Scholar]
- Theethayi, N.; Thottappillil, R.; Paolone, M.; Nucci, C.A.; Rachidi, F. External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 751–761. [Google Scholar] [CrossRef]
- ITU-T. CCITT Directives Volume {III}: Calculating Induced Voltages and Currents in Pratical Cases; Technical Report; ITU-T: Geneva, Switzerland, 1989. [Google Scholar]
- Cristofolini, A.; Popoli, A.; Sandrolini, L. Numerical Modelling of Interference from AC Power Lines on Buried Metallic Pipelines in Presence of Mitigation Wires. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
Quantity | Value | Units |
---|---|---|
—Phase I | ||
—Phase II | ||
—Phase III | ||
1 × 10−3 | −1 | |
5.5 × 106 | −1 | |
3.77 × 107 | −1 | |
5.5 × 106 | −1 | |
Pipe external radius | 0.4 | |
Pipe internal radius | 0.375 | |
OGW radius | 6 × 10−3 | |
1 | − | |
250 | − | |
1 | − | |
1 | − | |
3 × 10−4 + 9 × 10−6i | −1 | |
3 | ||
1 × 10−3 | −1 | |
1 |
I—Unmitigated | II—Cylinder | III—Square | IV—Sheet | |
---|---|---|---|---|
13.61 | 8.75 | 8.74 | 3.36 | |
27.63 | 20.23 | 20.21 | 7.62 |
Cylinder—MRV (%) | Square—MRV (%) | Sheet—SMRV (%) | |
---|---|---|---|
0 | 33.56 | 33.56 | 86.16 |
∞ | 35.42 | 35.49 | 78.71 |
35.72 | 35.78 | 82.73 |
Cylinder—MRI (%) | Square—MRI (%) | Sheet—MRI (%) | |
---|---|---|---|
0 | 26.10 | 26.15 | 65.09 |
∞ | 27.04 | 27.12 | 71.39 |
26.98 | 27.04 | 72.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popoli, A.; Sandrolini, L.; Cristofolini, A. Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors. Electricity 2021, 2, 316-329. https://doi.org/10.3390/electricity2030019
Popoli A, Sandrolini L, Cristofolini A. Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors. Electricity. 2021; 2(3):316-329. https://doi.org/10.3390/electricity2030019
Chicago/Turabian StylePopoli, Arturo, Leonardo Sandrolini, and Andrea Cristofolini. 2021. "Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors" Electricity 2, no. 3: 316-329. https://doi.org/10.3390/electricity2030019
APA StylePopoli, A., Sandrolini, L., & Cristofolini, A. (2021). Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors. Electricity, 2(3), 316-329. https://doi.org/10.3390/electricity2030019