Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MPC | Maximum permissible concentration |
IC | Intervention concentration—according to [16] |
WSA | Water-stable aggregate |
HM | Heavy metal |
MIP | Mercury intrusion porosimetry |
SOC | Soil organic carbon content |
EC | Electrical conductivity |
CEC | Total sum of exchange cations |
CECSA | Cation-exchange capacity of soil strongly acidic ion exchanger |
CECA | CEC of slightly acidic ion exchanger |
References
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing Heavy Metal Sources in Agricultural Soils of an European Mediterranean Area by Multivariate Analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A Critical Review on Various Remediation Approaches for Heavy Metal Contaminants Removal from Contaminated Soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.J.; Ling, Y.E.; Halim, K.A.; Sani, B.S.; Abdullahi, N.I. Heavy Metal Pollution and Transformation in Soil: A Comprehensive Review of Natural Bioremediation Strategies. J. Umm Al-Qura Univ. Appll. Sci. 2025, 11, 528–544. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Van Der Perk, M.; Van Der Grift, B.; De Nijs, T.C.M.; Bierkens, M.F.P. The Impact of Climate Change on Metal Transport in a Lowland Catchment. Water Air Soil Pollut. 2017, 228, 107. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in Soil pH and Mobility of Heavy Metals in Contaminated Soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of Heavy Metals in Soils and Their Immobilization at Micro-Scale Interfaces among Diverse Soil Components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Li, H.; Wang, Z.; Huang, X.; Yi, X.; Yan, D. Experimental Study on the Effects of Heavy Metal Pollution on Soil Physical Properties and Microstructure Evolution. Appl. Sci. 2024, 14, 2022. [Google Scholar] [CrossRef]
- Deng, A.; Wang, L.; Chen, F.; Li, Z.; Liu, W.; Liu, Y. Soil Aggregate-Associated Heavy Metals Subjected to Different Types of Land Use in Subtropical China. Glob. Ecol. Conserv. 2018, 16, e00465. [Google Scholar] [CrossRef]
- Atanassova, I.; Benkova, M.; Nenova, L.; Simeonova, T.; Harizanova, M. Sources of Metals, Metalloids and Non-Metals in Surface Horizons of Soils near Aurubis-Pirdop Copper Smelter in Bulgaria. Bulg. J. Agric. Sci. 2024, 30, 561–567. [Google Scholar]
- Kancheva, V.; Dinev, N.; Gadjalska, N. Risk Assessment of Copper Contamination in Soil and Surface Water in Topolnitsa River Catchment. Bulg. J. Soil Sci. Agrochem. Ecol. 2018, 52, 3–9. [Google Scholar]
- Benkova, M.; Atanassova, I. Effectiveness of Lime and Glauconite-Phosphorite Containing Organo-Mineral Ameliorants in Heavy-Metal-Contaminated Soils. In Phosphate in Soil: Interaction with Microelements, Radionuclides and Heavy Metal; CRC Press: Boca Raton, FL, USA, 2015; pp. 293–320. [Google Scholar]
- Dimitrov, D.; Markov, E. Comparative Study on the Trends in the Soil Formation Processes in Situation of Aerosol Input of Cu, Zn, Pb, As, SO2. Soil Sci. Agrochem. Ecol. 2000, 35, 11–14. [Google Scholar]
- Kercheva, M.; Paparkova, T.; Dimitrov, E.; Doneva, K.; Nedyalkova, K.; Perfanova, J.; Sechkova, R.; Velizarova, E.; Glushkova, M. Soil Structure Characteristics in Three Mountainous Regions in Bulgaria Under Different Land Uses. Forests 2025, 16, 1065. [Google Scholar] [CrossRef]
- Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation; ISO: Geneva, Switzerland, 2020; pp. 11277–12020.
- Revut, I.B. Methods of Soil Structure Investigations; Kolos Press: Leningrad, Soviet Union, 1969. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Structure and Soil Organic Matter II. A Normalized Stability Index and the Effect of Mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- de Vries, D.A. Thermal Properties of Soils. In Physics of Plant Environment; van Wijk, W.R., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Filcheva, E.; Tsadilas, C. Influence of Cliniptilolite and Compost on Soil Properties. Commun. Soil Sci. Plant Anal. 2002, 33, 595–607. [Google Scholar] [CrossRef]
- Kononova, M.M. Soil Organic Matter. Its Nature, Properties and Methods of Study; USSR Academy of Sciences: Moscow, Soviet Union, 1963. [Google Scholar]
- Ganev, S.; Arsova, A. Methods for Determining the Strongly Acid and Weakly Acid Cation Exchange in Soil. Soil Sci. Agrochem. 1980, 15, 22–33. [Google Scholar]
- Skic, K.; Boguta, P.; Sokołowska, Z. Analysis of the Sorption Properties of Different Soils Using Water Vapour Adsorption and Potentiometric Titration Methods. Int. Agrophys. 2016, 30, 369–374. [Google Scholar] [CrossRef]
- Cameron, K.C.; Buchan, G.D. Porosity and Pore Size Distribution. Encycl. Soil Sci. 2006, 2, 1350–1353. [Google Scholar]
- Decree No. 3 from 1st August 2008 for Standards of Acceptable Content of Harmful Substances in the Soil. State Gazette, Issue 71. 12 August 2008, p. 75. Available online: https://dv.parliament.bg/DVWeb/showMaterialDV.jsp?idMat=7670 (accessed on 29 June 2025).
- Atanassov, I. New Bulgarian Soil Pollution Standards. Bulg. J. Agric. Sci. 2007, 14, 68–75. Available online: https://agrojournal.org/14/01-08-08.pdf (accessed on 29 June 2025).
- van Lynden, G.W.J. Guidelines for the Assessment of Soil Degradation in Central and Eastern Europe (SOVEUR). Report 97/08b (Revised Edition); ISRIC: Wageningen, The Netherlands, 2000. [Google Scholar]
- Ministry of the Environment. Finland Government Decree on the Assessment of Soil Contamination and Remediation Needs; Ministry of the Environment: Helsinki, Finland, 2007; p. 214. Available online: https://www.finlex.fi/en/legislation/translations/2007/eng/214 (accessed on 11 September 2025).
- Ganev, S. Modern Soil Chemistry; Science and Art: Sofia, Bulgaria, 1990. [Google Scholar]
- Wu, Y.-H.; Wu, Y.-F.; Fan, L.-W.; Yu, Z.-T.; Khodadadi, J.M. Thermal Conductivity of Soil: A Review on the Vast Experimental Data and Predictive Models. Int. J. Therm. Sci. 2025, 208, 109486. [Google Scholar] [CrossRef]
Depth, cm | As mg·kg−1 | Cd mg·kg−1 | Cu mg·kg−1 | Pb mg·kg−1 | Zn mg·kg−1 |
---|---|---|---|---|---|
MPC (pastures, pH < 6) | 30 | 2 | 80 | 90 | 220 |
IC | 90 | 12 | 500 | 500 | 900 |
Higher guideline value | 100 | 20 | 200 | 750 | 400 |
Profile 1 | |||||
0–5 | 181.6 | 5.7 | 1101.6 | 44,498.9 | 167.8 |
10–15 | 39.9 | 3.9 | 1013.0 | 109.9 | 112.4 |
25–30 | 8.0 | 6.4 | 801.4 | 33.5 | 95.6 |
40–60 | 17.3 | 4.8 | 392.9 | 25.9 | 103.4 |
60–80 | 19.5 | 5.1 | 325.7 | 15.3 | 93.8 |
Profile 2 | |||||
0–5 | 68.5 | 4.9 | 931.0 | 115.7 | 94.7 |
10–15 | 17.5 | 6.6 | 824.2 | 47.0 | 109.1 |
25–30 | 18.0 | 3.7 | 32.2 | 14.0 | 72.2 |
40–60 | 20.6 | 7.3 | 24.3 | 20.4 | 66.8 |
60–80 | 19.1 | 6.6 | 18.8 | 9.4 | 72.4 |
As | Cd | Cu | Pb | Zn | |
---|---|---|---|---|---|
As | 1 | ||||
Cd | −0.06 | 1 | |||
Cu | 0.56 * | −0.15 | 1 | ||
Pb | 0.95 *** | 0.06 | 0.45 | 1 | |
Zn | 0.83 *** | −0.11 | 0.79 *** | 0.84 *** | 1 |
Minerals | Profile 1 | Profile 2 | ||
---|---|---|---|---|
>63 μm | <63 μm | >63 μm | <63 μm | |
Quarz (SiO2) | 35.9 | 12.6 | 33.8 | 26.1 |
Plagioclase [(Na,Ca)(Si,Al)4O8] | 23.1 | 13.1 | 18.9 | 21.3 |
K-feldspar (KAlSi3O8) | 7.6 | 25.8 | 12.1 | 11.7 |
Muscovite {KAl2[AlSi3O10](OH)2} | 21.9 | 24.3 | 25.0 | 34.6 |
Amphibol {Ca2[Mg4(Al,Fe)]Si7AlO22(OH)2} | 2.9 | 3.7 | 3.1 | 4.6 |
Chlorite {[Mg,Al,Fe]6[Si,Al]4O10(OH)8} | 6.9 | 19.7 | 6.8 | 0.2 |
Montmorillonite [(Na,Ca)0,3(Al,Mg)2Si4O10(OH)2•n(H2O)] | 0.8 | 0.3 | 1.5 | |
Calcite (CaCO3) | 1.6 |
Sampling Depth, cm | Sand (2–0.063 mm), % | Silt (0.063–0.002 mm), % | Clay (<0.002 mm), % | Texture Class |
---|---|---|---|---|
Profile 1 | ||||
0–5 | 29.6 | 51.5 | 18.9 | Loam |
10–15 | 28.5 | 48.5 | 23.0 | Loam |
25–30 | 21.1 | 51.3 | 27.6 | Clay Loam |
40–60 | 20.3 | 52.6 | 27.1 | Clay Loam |
60–80 | 22.0 | 48.7 | 29.2 | Clay Loam |
Profile 2 | ||||
0–5 | 25.1 | 50.0 | 24.8 | Loam |
10–15 | 23.0 | 50.6 | 26.4 | Loam |
25–30 | 26.7 | 48.5 | 24.8 | Loam |
40–60 | 24.5 | 48.5 | 26.9 | Clay Loam |
60–80 | 24.7 | 48.2 | 27.0 | Clay Loam |
Sampling Depth cm | SOC | pH | EC, | cmol·kg−1 | Base | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | H2O | ms·cm−1 | CEC | CECSA | CECA | Exch.H8.2 | Exch. Al | Exch. Ca | Exch. Mg | Saturation, % | |
Profile 1 | |||||||||||
0–5 | 1.49 | 4.6 | 0.042 | 25.0 | 18.5 | 6.5 | 9.6 | 3.2 | 13.5 | 2.0 | 61 |
10–15 | 0.80 | 4.3 | 0.035 | 21.0 | 14.4 | 6.6 | 10.5 | 4.0 | 9.0 | 1.8 | 50 |
25–30 | 0.73 | 4.4 | 0.035 | 21.2 | 15.7 | 5.5 | 9.2 | 3.6 | 10.0 | 1.8 | 56 |
40–60 | 0.69 | 4.6 | 0.021 | 24.0 | 18.8 | 5.2 | 7.6 | 1.6 | 14.6 | 1.9 | 68 |
60–80 | 0.73 | 4.9 | 0.021 | 24.7 | 19.5 | 5.2 | 6.5 | 1.0 | 16.2 | 2.0 | 73 |
Profile 2 | |||||||||||
0–5 | 1.09 | 4.7 | 0.042 | 25.1 | 17.6 | 7.5 | 9.2 | 1.8 | 14.0 | 2.0 | 63 |
10–15 | 0.98 | 5.0 | 0.056 | 23.2 | 17.8 | 5.4 | 6.5 | 1.1 | 14.5 | 1.9 | 71 |
25–30 | 0.46 | 5.4 | 0.070 | 23.0 | 18.8 | 4.2 | 5.0 | 0.8 | 15.8 | 1.9 | 78 |
40–60 | 0.34 | 5.5 | 0.098 | 23.0 | 19.5 | 3.5 | 4.2 | 0.6 | 16.5 | 2.0 | 81 |
60–80 | 0.15 | 5.7 | 0.126 | 23.1 | 19.9 | 3.2 | 3.6 | 0.3 | 17.5 | 2.0 | 84 |
Sampling Depth | Vt | SMIP | Dav | SSA | D | Macropores | Mesopores | Micropores | Ultramicropores | Cryptoprobes | Pores < 7 nm |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | cm3·g−1 | m2·g−1 | nm | m2·g−1 | % | % | % | % | % | % | |
Profile 1 | |||||||||||
0–5 | 0.22 ± 0.01 cd | 7.47 ± 0.25 a | 400.00 ± 22.27 e | 11.41 ± 0.02 a | 2.66 ± 0.000 g | 3.86 ± 0.24 b | 0.60 ± 0.02 d | 0.92 ± 0.02 e | 78.85 ± 1.89 f | 14.44 ± 0.66 a | 1.34 ± 0.03 a |
10–15 | 0.19 ± 0.00 abc | 8.16 ± 0.20 ab | 269.52 ± 8.57 c | 13.07 ± 0.03 b | 2.65 ± 0.001 f | 4.13 ± 0.07 b | 0.48 ± 0.04 c | 0.34 ± 0.02 b | 73.95 ± 2.78 def | 19.48 ± 0.22 c | 1.62 ± 0.03 b |
25–30 | 0.20 ± 0.01 abcd | 10.27 ± 0.56 bcd | 232.23 ± 13.97 abc | 15.06 ± 0.08 c | 2.61 ± 0.001 c | 3.17 ± 0.16 a | 0.30 ± 0.02 a | 0.28 ± 0.01 a | 72.79 ± 0.91 cde | 21.40 ± 0.17 cd | 2.05 ± 0.03 c |
40–60 | 0.20 ± 0.01 abcd | 12.56 ± 0.39 de | 220.65 ± 10.05 ab | 17.62 ± 0.17 e | 2.59 ± 0.001 b | 3.90 ± 0.15 b | 0.47 ± 0.02 c | 0.46 ± 0.02 c | 68.76 ± 2.32 bc | 23.29 ± 0.25 de | 3.11 ± 0.03 e |
60–80 | 0.18 ± 0.02 a | 11.85 ± 1.09 cde | 214.96 ± 8.15 ab | 17.83 ± 0.01 e | 2.60 ± 0.003 b | 5.09 ± 0.07 d | 0.27 ± 0.02 a | 0.30 ± 0.02 ab | 66.81 ± 1.85 b | 24.35 ± 0.44 e | 3.18 ± 0.07 e |
Profile 2 | |||||||||||
0–5 | 0.22 ± 0.00 d | 10.56 ± 0.15 cd | 322.78 ± 10.40 d | 16.17 ± 0.13 d | 2.63 ± 0.003 d | 4.04 ± 0.15 b | 0.37 ± 0.02 b | 0.51 ± 0.02 d | 76.17 ± 0.78 ef | 16.47 ± 0.91 b | 2.44 ± 0.12 d |
10–15 | 0.21 ± 0.01 bcd | 10.10 ± 0.68 bc | 329.89 ± 13.25 d | 14.74 ± 0.07 c | 2.63 ± 0.001 e | 5.13 ± 0.01 d | 0.27 ± 0.00 a | 0.31 ± 0.02 ab | 75.27 ± 2.16 ef | 16.68 ± 0.69 b | 2.35 ± 0.08 d |
25–30 | 0.18 ± 0.01 a | 10.64 ± 0.50 cd | 249.16 ± 10.67 bc | 17.59 ± 0.08 e | 2.62 ± 0.001 d | 3.38 ± 0.01 a | 0.38 ± 0.02 b | 0.30 ± 0.02 ab | 72.73 ± 1.00 cde | 20.07 ± 0.58 c | 3.14 ± 0.14 e |
40–60 | 0.18 ± 0.01 ab | 12.98 ± 0.72 e | 310.07 ± 18.91 d | 21.45 ± 0.12 f | 2.61 ± 0.000 c | 4.62 ± 0.04 c | 0.37 ± 0.01 b | 0.32 ± 0.01 ab | 70.23 ± 0.54 bcd | 20.30 ± 0.65 c | 4.16 ± 0.06 f |
60–80 | 0.18 ± 0.02 ab | 16.93 ± 1.82 f | 205.24 ± 13.86 a | 25.48 ± 0.28 g | 2.58 ± 0.002 a | 5.05 ± 0.14 d | 0.50 ± 0.02 c | 0.42 ± 0.01 c | 59.04 ± 1.37 a | 30.15 ± 1.34 f | 4.83 ± 0.08 g |
F | 6.69 | 33.85 | 64.03 | 2073.70 | 502.35 | 94.40 | 96.16 | 363.81 | 32.39 | 133.17 | 602.32 |
p | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Qv | SOC | pH | CEC | CECSA | CECA | Exch.H8.2 | Exch. Al | Base Saturation | |
---|---|---|---|---|---|---|---|---|---|
Qv | 1 | ||||||||
SOC | 0.86 ** | 1 | |||||||
pH in H2O | −0.74 * | −0.68 | 1 | ||||||
T8.2≡CEC | 0.46 | 0.41 | 0.14 | 1 | |||||
CECSA | −0.32 | −0.33 | 0.76 | 0.65 | 1 | ||||
CECA | 0.90 *** | 0.85 ** | −0.83 ** | 0.21 | −0.61 | 1 | |||
Exch. H8.2 | 0.77 ** | 0.77 ** | −0.96 *** | −0.07 | −0.77 ** | 0.92 *** | 1 | ||
Exch. Al | 0.48 | 0.58 | −0.88 *** | −0.39 | −0.85 ** | 0.69 * | 0.91 *** | 1 | |
Base saturation | −0.64 | −0.65 | 0.96 *** | 0.29 | 0.89 *** | −0.83 ** | −0.98 *** | −0.96 *** | 1 |
Depth | MWDR1–3 | Db | Ds | Pt | W2.0 | W4.2 | W5.6 |
---|---|---|---|---|---|---|---|
cm | g cm−3 | g·cm−3 | %v/v | % w/w | % w/w | % w/w | |
Profile 1 | |||||||
0–5 | 0.43 ± 0.02 a* | 1.07 ± 0.18 a | 2.75 | 61.3 ± 6.6 a | 38.4 ± 5.1 a | 9.2 ± 0.1 a | 3.04 ± 0.04 b |
10–15 | 0.18 ± 0.05 b | 1.42 ± 0.06 b | 2.77 | 48.5 ± 2.1 b | 23.4 ± 0.7 de | 9.3 ± 0.1 a | 2.78 ± 0.03 a |
25–30 | 0.17 ± 0.02 bc | 1.53 ± 0.01 bc | 2.76 | 44.6 ± 0.4 bc | 25.3 ± 0.3 cd | 10.9 ± 0.0 c | 3.01 ± 0.03 b |
40–60 | 0.15 ± 0.04 bcd | n.d. ** | 2.78 | n.d. | n.d. | 12.2 ± 0.0 f | 3.35 ± 0.02 c |
60–80 | 0.15 ± 0.03 bc | n.d. | 2.77 | n.d. | n.d. | 11.6 ± 0.2 e | 3.57 ± 0.02 d |
Profile 2 | |||||||
0–5 | 0.10 ± 0.01 d | 1.18 ± 0.02 a | 2.71 | 56.6 ± 0.7 a | 32.9 ± 1.3 b | 11.0 ± 0.4 c | 3.72 ± 0.05 e |
10–15 | 0.12 ± 0.01 cd | 1.43 ± 0.09 b | 2.73 | 47.6 ± 3.2 b | 26.6 ± 1.2 c | 11.3 ± 0.1 d | 3.63 ± 0.03 d |
25–30 | 0.19 ± 0.03 b | 1.61 ± 0.08 c | 2.77 | 41.9 ± 2.9 c | 21.2 ± 1.2 e | 10.5 ± 0.1 b | 3.57 ± 0.10 d |
40–60 | 0.16 ± 0.04 bc | n.d. | 2.78 | n.d. | n.d. | 11.4 ± 0.2 de | 3.81 ± 0.02 f |
60–80 | 0.16 ± 0.02 bc | n.d. | 2.80 | n.d. | n.d. | 13.1 ± 0.1 g | 3.97 ± 0.03 g |
F | 27.86 | 22.36 | 20.8 | 36.5 | 162.35 | 244.93 | |
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
As | Cd | Cu | Pb | Zn | |
---|---|---|---|---|---|
T8.2≡CEC | 0.49 | −0.03 | 0 | 0.41 | 0.28 |
CECSA | 0 | 0.31 | −0.70 ** | 0.09 | −0.28 |
CECA | 0.51 | −0.42 | 0.90 *** | 0.31 | 0.66 ** |
Exch. H8.2 | 0.47 | −0.39 | 0.91 *** | 0.35 | 0.70 ** |
Exch. Al | 0.41 | −0.27 | 0.81 *** | 0.37 | 0.64 ** |
Base saturation | −0.33 | 0.36 | −0.88 *** | −0.24 | −0.61 * |
Qv (surface charge) | 0.5 | −0.22 | 0.79 *** | 0.34 | 0.66 ** |
SOC | 0.76 * | −0.17 | 0.87 *** | 0.68 ** | 0.89 *** |
pH in H2O | −0.3 | 0.37 | −0.83 *** | −0.23 | −0.64 ** |
EC | −0.17 | 0.49 | −0.61 * | −0.13 | −0.52 |
sand (2–0.063 mm) | 0.67 ** | −0.3 | 0.3 | 0.58 * | 0.41 |
clay (<0.002 mm) | −0.87 *** | 0.27 | −0.57 * | −0.81 *** | −0.74 ** |
MWDR (F0.25–10 mm) | 0.56 * | −0.07 | 0.44 | 0.30 | 0.31 |
MWDR (F1–3 mm) | 0.84 *** | −0.01 | 0.32 | 0.95 *** | 0.75 ** |
Vt (total pore volume, MIP) | 0.63 * | 0.02 | 0.82 *** | 0.51 | 0.71 ** |
Dav (average pore diameter) | 0.77 *** | 0.18 | 0.58 * | 0.69 ** | 0.64 ** |
SSA (specific surface area) | −0.53 | 0.37 | −0.86 *** | −0.49 | −0.79 *** |
D (surface fractal dimension) | 0.69 ** | −0.27 | 0.76 ** | 0.59 * | 0.70 ** |
Macropores (>75 μm) | −0.18 | 0.42 | −0.25 | −0.19 | −0.17 |
Mesopores (75–30 μm) | 0.65 ** | −0.18 | 0.15 | 0.64 ** | 0.49 |
Micropores (30–5 μm) | 0.95 *** | −0.01 | 0.45 | 0.92 *** | 0.78 *** |
Ultramicropores (5–0.1 μm) | 0.55 * | −0.23 | 0.75 ** | 0.46 | 0.62 * |
Cryptopores (0.1–0.007 μm) | −0.58 * | 0.14 | −0.69 ** | −0.48 | −0.59 * |
Pores < 7 nm | −0.53 | 0.36 | −0.91 *** | −0.48 | −0.79 *** |
W4.2 (wilting point) | −0.60 * | 0.41 | −0.66 ** | −0.55 | −0.63 * |
W5.6 (hygroscopic water) | −0.36 | 0.36 | −0.70 ** | −0.39 | −0.67 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kercheva, M.; Boguta, P.; Skic, K.; Kolchakov, V.; Doneva, K.; Benkova, M. Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria. Pollutants 2025, 5, 33. https://doi.org/10.3390/pollutants5040033
Kercheva M, Boguta P, Skic K, Kolchakov V, Doneva K, Benkova M. Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria. Pollutants. 2025; 5(4):33. https://doi.org/10.3390/pollutants5040033
Chicago/Turabian StyleKercheva, Milena, Patrycja Boguta, Kamil Skic, Viktor Kolchakov, Katerina Doneva, and Maya Benkova. 2025. "Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria" Pollutants 5, no. 4: 33. https://doi.org/10.3390/pollutants5040033
APA StyleKercheva, M., Boguta, P., Skic, K., Kolchakov, V., Doneva, K., & Benkova, M. (2025). Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria. Pollutants, 5(4), 33. https://doi.org/10.3390/pollutants5040033