Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock
Abstract
1. Introduction
2. Literature Search Criteria
3. Lead as an Endocrine Disruptor of Reproductive Processes
3.1. Impacts on Reproduction: Aquatic Species
3.2. Impacts on Reproduction: Livestock Species
4. Molecular Biomarkers of Lead and Reproductive Dysfunction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKB | Advaita Knowledge Base |
AKT | Protein kinase B |
AMH | Anti-Mullerian hormone |
As | Arsenic |
ASTDR | Agency for Toxic Substances and Disease Registry |
BCL2 | BCL2 apoptosis regulator |
BDNF | Brain-derived neurotrophic factor |
Ca2+ | Calcium |
Cd | Cadmium |
CASP3 | Caspase-3 |
CAT | Catalase |
Cr | Chromium |
CREB | cAMP response element-binding protein |
CNS | Central nervous system |
CTD | Comparative Toxicogenomics Database |
Cu | Copper |
DE | Differentially expressed |
DPF | Days post-fertilization |
EGFR | Epidermal Growth Factor Receptor |
eNOS | Endothelial nitric oxide synthase |
EPA | Environmental Protection Agency |
ERK | Extracellular signal-regulated kinase |
ESR1 | Estrogen Receptor 1 |
E2 | 17β-estradiol |
FSH | Follicle-stimulating hormone |
GC | Granulosa cell |
GGT | Gamma-glutamyl transferase |
GH1 | Growth Hormone 1 |
GI | Gastrointestinal |
GPx | Glutathione peroxidase |
GSH | Glutathione |
Hg | Mercury |
HPA | Hypothalamic pituitary adrenal axis |
HPF | Hypothalamic pituitary fetal gonadal axis |
HPG | Hypothalamic pituitary gonadal axis |
ICM | Inner cell mass |
K+ | Potassium |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LH | Luteinizing hormone |
MDA | Malondialdehyde |
Mg2+ | Magnesium |
MMP2 | Matrix Metallopeptidase 2 |
MT | Metallothionein |
MTOR | Mammalian target of rapamycin |
NIH | National Institute of Health |
Pb | Lead |
PTEN | Phosphatase and tensin homolog |
ROS | Reactive oxygen species |
SC | Sertoli cells |
SOD | Superoxide dismutase |
ST | Swine testis |
STAT3 | Signal Transducer and Activator of Transcription 3 |
TCN | Total cell counts |
TGFB1 | Transforming Growth Factor Beta 1 |
VTG | Vitellogenin |
WHO | World Health Organization |
Zn | Zinc |
References
- Flora, S.J.; Agrawal, S. Arsenic, Cadmium, and Lead. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 537–566. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- EPA. Basic Information About Lead in Drinking Water. 2025. Available online: https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water (accessed on 6 June 2025).
- ATSDR. Toxicological Profile for Lead. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22 (accessed on 6 June 2025).
- Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Mielke, P.W., Jr. Spatiotemporal dynamic transformations of soil lead and children’s blood lead ten years after Hurricane Katrina: New grounds for primary prevention. Environ. Int. 2016, 94, 567–575. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Manocha, A.; Srivastava, L.M.; Bhargava, S. Lead as a Risk Factor for Osteoporosis in Post-menopausal Women. Indian J. Clin. Biochem. 2017, 32, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Batool, Z.; Yousafzai, N.A.; Murad, M.S.; Shahid, S.; Iqbal, A. Lead toxicity and evaluation of oxidative stress in humans. PSM Biol. Res. 2017, 2, 79–82. [Google Scholar]
- Joseph, C.L.; Havstad, S.; Ownby, D.R.; Peterson, E.L.; Maliarik, M.; Mc Cabe, M.J., Jr.; Barone, C.; Johnson, C.C. Blood lead level and risk of asthma. Environ. Health Perspect. 2005, 113, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Kianoush, S.; Balali-Mood, M.; Mousavi, S.R.; Moradi, V.; Sadeghi, M.; Dadpour, B.; Rajabi, O.; Shakeri, M.T. Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning. Basic Clin. Pharmacol. Toxicol. 2012, 110, 476–481. [Google Scholar] [CrossRef]
- Garza, A.; Vega, R.; Soto, E. Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit. 2006, 12, RA57–RA65. [Google Scholar] [PubMed]
- Hwang, L. Environmental stressors and violence: Lead and polychlorinated biphenyls. Rev. Environ. Health 2007, 22, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Erratum: “Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis”. Environ. Health Perspect. 2019, 127, 099001. [Google Scholar] [CrossRef]
- Monnet-Tschudi, F.; Zurich, M.-G.; Boschat, C.; Corbaz, A.; Honegger, P. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health 2006, 21, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Gillis, B.S.; Arbieva, Z.; Gavin, I.M. Analysis of lead toxicity in human cells. BMC Genom. 2012, 13, 344. [Google Scholar] [CrossRef]
- Liu, M.; Deng, P.; Li, G.; Liu, H.; Zuo, J.; Cui, W.; Zhang, H.; Chen, X.; Yao, J.; Peng, X.; et al. Neurotoxicity of Combined Exposure to the Heavy Metals (Pb and As) in Zebrafish (Danio rerio). Toxics 2024, 12, 282. [Google Scholar] [CrossRef]
- Simons, T.; Pocock, G. Lead enters bovine adrenal medullary cells through calcium channels. J. Neurochem. 1987, 48, 383–389. [Google Scholar] [CrossRef]
- Kapper, C.; Oppelt, P.; Ganhör, C.; Gyunesh, A.A.; Arbeithuber, B.; Stelzl, P.; Rezk-Füreder, M. Minerals and the menstrual cycle: Impacts on ovulation and endometrial health. Nutrients 2024, 16, 1008. [Google Scholar] [CrossRef]
- Webb, S.E.; Fluck, R.A.; Miller, A.L. Calcium signaling during the early development of medaka and zebrafish. Biochimie 2011, 93, 2112–2125. [Google Scholar] [CrossRef]
- Kumar, S. Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. Indian J. Occup. Environ. Med. 2018, 22, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.; Etkovitz, N.; Breitbart, H. Ca2+ signaling in mammalian spermatozoa. Mol. Cell. Endocrinol. 2020, 516, 110953. [Google Scholar] [CrossRef]
- Butts, I.A.; Alavi, S.M.H.; Mokdad, A.; Pitcher, T.E. Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 166, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Curcio, V.; Macirella, R.; Sesti, S.; Pellegrino, D.; Ahmed, A.I.; Brunelli, E. Morphological and molecular alterations induced by lead in embryos and larvae of Danio rerio. Appl. Sci. 2021, 11, 7464. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Ribeiro, Y.M.; Moreira, D.P.; Paschoalini, A.L.; Bazzoli, N.; Rizzo, E. Reproductive toxicity induced by lead exposure: Effects on gametogenesis and sex steroid signaling in teleost fish. Chemosphere 2023, 340, 139896. [Google Scholar] [CrossRef] [PubMed]
- Sionkowski, J.; Łuszczek-Trojnar, E.; Popek, W.; Drąg-Kozak, E.; Socha, M. Impact of long-term dietary exposure to lead on some reproductive parameters of a female Common carp (C yprinus carpio L.). Aquac. Res. 2017, 48, 111–122. [Google Scholar] [CrossRef]
- Meyer, D.N.; Crofts, E.J.; Akemann, C.; Gurdziel, K.; Farr, R.; Baker, B.B.; Weber, D.; Baker, T.R. Developmental exposure to Pb2+ induces transgenerational changes to zebrafish brain transcriptome. Chemosphere 2020, 244, 125527. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Zhang, X.; Lam, P.K.; Guo, Y.; Lam, J.C.; Zhou, B. Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. Environ. Pollut. 2017, 230, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Gautam, G.J.; Chaube, R. Differential effects of heavy metals (cadmium, cobalt, lead and mercury) on oocyte maturation and ovulation of the catfish Heteropneustes fossilis: An in vitro study. Turk. J. Fish. Aquat. Sci. 2018, 18, 1205–1214. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Taherianfard, M. Concentration of four heavy metals (cadmium, lead, mercury, and arsenic) in organs of two cyprinid fish (Cyprinus carpio and Capoeta sp.) from the Kor River (Iran). Environ. Monit. Assess. 2010, 168, 575–585. [Google Scholar] [CrossRef]
- Paschoalini, A.; Savassi, L.; Arantes, F.; Rizzo, E.; Bazzoli, N. Heavy metals accumulation and endocrine disruption in Prochilodus argenteus from a polluted neotropical river. Ecotoxicol. Environ. Saf. 2019, 169, 539–550. [Google Scholar] [CrossRef]
- Swarup, D.; Naresh, R.; Varshney, V.; Balagangatharathilagar, M.; Kumar, P.; Nandi, D.; Patra, R. Changes in plasma hormones profile and liver function in cows naturally exposed to lead and cadmium around different industrial areas. Res. Vet. Sci. 2007, 82, 16–21. [Google Scholar] [CrossRef]
- Akarsu, S.; Yilmaz, M.; Niksarlioglu, S.; Kulahci, F.; Risvanli, A. Radioactivity, heavy metal and oxidative stress measurements in the follicular fluids of cattle bred near a coal-fired power plant. JAPS J. Anim. Plant Sci. 2017, 27, 373–378. [Google Scholar]
- Waldner, C.; Checkley, S.; Blakley, B.; Pollock, C.; Mitchell, B. Managing lead exposure and toxicity in cow–calf herds to minimize the potential for food residues. J. Vet. Diagn. Investig. 2002, 14, 481–486. [Google Scholar] [CrossRef]
- Capcarová, M.; Kolesárová, A.; Lukác, N.; Sirotkin, A.; Roychoudhury, S. Antioxidant status and selected biochemical parameters of porcine ovarian granulosa cells exposed to lead in vitro. J. Environ. Sci. Health Part A 2009, 44, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Kolesarova, A.; Roychoudhury, S.; Slivkova, J.; Sirotkin, A.; Capcarova, M.; Massanyi, P. In vitro study on the effects of lead and mercury on porcine ovarian granulosa cells. J. Environ. Sci. Health 2010, 45, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Aglan, H.S.; Gebremedhn, S.; Salilew-Wondim, D.; Neuhof, C.; Tholen, E.; Holker, M.; Schellander, K.; Tesfaye, D. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res. 2020, 380, 643–655. [Google Scholar] [CrossRef]
- Nandi, S.; Gupta, P.; Selvaraju, S.; Roy, S.; Ravindra, J. Effects of exposure to heavy metals on viability, maturation, fertilization, and embryonic development of buffalo (Bubalus bubalis) Oocytes In Vitro. Arch. Environ. Contam. Toxicol. 2010, 58, 194–204. [Google Scholar] [CrossRef]
- Aglan, H.S.B. In Vitro and In Vivo Assessment of Lead Toxicity on Mammalian Female Reproduction and Effect of Antioxidants; Universitäts-und Landesbibliothek Bonn: Bonn, Germany, 2020. [Google Scholar]
- Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; Dell’OMo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef]
- Abdelsalam, E.E.E.; Banďouchová, H.; Heger, T.; Kaňová, M.; Kobelková, K.; Němcová, M.; Pikula, J. Reproductive toxicity of heavy metals in fallow deer in vitro. Acta Vet. Brno 2021, 90, 277–286. [Google Scholar] [CrossRef]
- Yadav, R.S.; Kushawaha, B.; Dhariya, R.; Swain, D.K.; Yadav, B.; Anand, M.; Kumari, P.; Rai, P.K.; Singh, D.; Yadav, S.; et al. Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: Signaling and ultra-structural evidences. Biol. Res. 2024, 57, 44. [Google Scholar] [CrossRef]
- Castellanos, P.; Maroto-Morales, A.; García-Álvarez, O.; Garde, J.J.; Mateo, R. Identification of optimal concentrations and incubation times for the study of in vitro effects of Pb in ram spermatozoa. Bull. Environ. Contam. Toxicol. 2013, 91, 197–201. [Google Scholar] [CrossRef]
- Abd El-Hameed, A.R.; Shalaby, S.; Mohamed, A.H.; Sabra, H. Effect of oral administration of lead acetate on some biochemical and hormonal parameters during pregnancy in Baladi Goats. Glob. Vet. 2008, 2, 301–307. [Google Scholar]
- Yu, D.; Xu, Z.; Yang, X. Effects of lead and particulate montmorillonite on growth performance, hormone and organ weight in pigs. Asian-Australasian J. Anim. Sci. 2005, 18, 1775–1779. [Google Scholar] [CrossRef]
- Qu, J.; Niu, H.; Wang, J.; Wang, Q.; Li, Y. Potential mechanism of lead poisoning to the growth and development of ovarian follicle. Toxicology 2021, 457, 152810. [Google Scholar] [CrossRef]
- Bera, T.; Kumar, S.; Devi, M.; Kumar, V.; Behera, B.; Das, B. Effect of heavy metals in fish reproduction: A review. J. Environ. Biol. 2022, 43, 631–642. [Google Scholar] [CrossRef]
- Chakraborty, S.B. Non-essential heavy metals as endocrine disruptors: Evaluating impact on reproduction in teleosts. Proc. Zool. Soc. 2021, 74, 417–431. [Google Scholar] [CrossRef]
- Tung, P.W.; Kennedy, E.M.; Burt, A.; Hermetz, K.; Karagas, M.; Marsit, C.J. Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics 2022, 17, 2404–2420. [Google Scholar] [CrossRef]
- Meng, Y.; Zhou, M.; Wang, T.; Zhang, G.; Tu, Y.; Gong, S.; Zhang, Y.; Christiani, D.C.; Au, W.; Liu, Y.; et al. Occupational lead exposure on genome-wide DNA methylation and DNA damage. Environ. Pollut. 2022, 304, 119252. [Google Scholar] [CrossRef] [PubMed]
- Gárriz, Á.; Del Fresno, P.S.; Carriquiriborde, P.; Miranda, L.A. Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis). Gen. Comp. Endocrinol. 2019, 273, 152–162. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation. Available online: http://data.europa.eu/eli/reg/2023/915/2025-01-01 (accessed on 27 June 2025).
- Ribeiro, I.M.; de Azevedo Viana, A.G.; Carvalho, R.P.R.; Waddington, B.; Machado-Neves, M. Could metal exposure affect sperm parameters of domestic ruminants? A meta-analysis. Anim. Reprod. Sci. 2022, 244, 107050. [Google Scholar] [CrossRef]
- Chand, N.; Tyagi, S.; Prasad, R.; Dutta, D.; Sirohi, A.; Sharma, A.; Tyagi, R. Effect of heavy metals on oxidative markers and semen quality parameters in HF crossbred bulls. Indian J. Anim. Sci. 2019, 89, 632–636. [Google Scholar] [CrossRef]
- Akarsu, S.A.; Türk, G.; Arkalı, G.; Çeribaşı, A.O.; Yüce, A. Changes in heavy metal levels, reproductive characteristics, oxidative stress markers and testicular apoptosis in rams raised around thermal power plant. Theriogenology 2022, 179, 211–222. [Google Scholar] [CrossRef]
- Heidari, A.H.; Zamiri, M.J.; Nazem, M.N.; Shirazi, M.R.J.; Akhlaghi, A.; Pirsaraei, Z.A. Detrimental effects of long-term exposure to heavy metals on histology, size and trace elements of testes and sperm parameters in Kermani Sheep. Ecotoxicol. Environ. Saf. 2021, 207, 111563. [Google Scholar] [CrossRef]
- Castellanos, P.; del Olmo, E.; Fernández-Santos, M.R.; Rodríguez-Estival, J.; Garde, J.J.; Mateo, R. Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites. Sci. Total. Environ. 2015, 505, 32–38. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, K.; Gao, M.; Xu, S. Zinc inhibits lead-induced oxidative stress and apoptosis of ST cells through ROS/PTEN/PI3K/AKT axis. Biol. Trace Element Res. 2024, 202, 980–989. [Google Scholar] [CrossRef]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2023, 51, D1257–D1262. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30, 42–46. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.O. Creating the gene ontology resource: Design and implementation. Genome Res. 2001, 11, 1425–1433. [Google Scholar] [CrossRef]
- Nam, J.-W.; Rissland, O.S.; Koppstein, D.; Abreu-Goodger, C.; Jan, C.H.; Agarwal, V.; Yildirim, M.A.; Rodriguez, A.; Bartel, D.P. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 2014, 53, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Kawamura, K.; Kawamura, N.; Mulders, S.M.; Gelpke, M.D.S.; Hsueh, A.J. Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos. Proc. Natl. Acad. Sci. USA 2005, 102, 9206–9211. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zhang, B.; Xu, T.; Yin, D.; Gu, W.; Bai, J. Developmental exposure to lead at environmentally relevant concentrations impaired neurobehavior and NMDAR-dependent BDNF signaling in zebrafish larvae. Environ. Pollut. 2020, 257, 113627. [Google Scholar] [CrossRef]
- Gąssowska, M.; Baranowska-Bosiacka, I.; Moczydłowska, J.; Frontczak-Baniewicz, M.; Gewartowska, M.; Strużyńska, L.; Gutowska, I.; Chlubek, D.; Adamczyk, A. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 2016, 373, 13–29. [Google Scholar] [CrossRef]
- Hossain, S.; Bhowmick, S.; Jahan, S.; Rozario, L.; Sarkar, M.; Islam, S.; Basunia, M.A.; Rahman, A.; Choudhury, B.K.; Shahjalal, H. Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. NeuroToxicology 2016, 56, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Forsthuber, M.; Szigeti, T.; Kakucs, R.; Mustieles, V.; Fernandez, M.F.; Bengtsen, E.; Vogel, U.; Hougaard, K.S.; Saber, A.T. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int. J. Hyg. Environ. Health 2021, 238, 113855. [Google Scholar] [CrossRef] [PubMed]
- Hussar, P. Apoptosis regulators bcl-2 and caspase-3. Encyclopedia 2022, 2, 1624–1636. [Google Scholar] [CrossRef]
- Kataba, A.; Botha, T.L.; Nakayama, S.M.; Yohannes, Y.B.; Ikenaka, Y.; Wepener, V.; Ishizuka, M. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 252, 109215. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Xue, L.; Qi, X.; Bai, Y.; Wu, Y. Gene networks and toxicity/detoxification pathways in juvenile largemouth bass (Micropterus salmoides) liver induced by acute lead stress. Genomics 2020, 112, 20–31. [Google Scholar] [CrossRef]
- Guo, J.; Pu, Y.; Zhong, L.; Wang, K.; Duan, X.; Chen, D. Lead impaired immune function and tissue integrity in yellow catfish (Peltobargus fulvidraco) by mediating oxidative stress, inflammatory response and apoptosis. Ecotoxicol. Environ. Saf. 2021, 226, 112857. [Google Scholar] [CrossRef]
- Morita, Y.; Perez, G.I.; Maravei, D.V.; Tilly, K.I.; Tilly, J.L. Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocyte apoptosis in vitro. Mol. Endocrinol. 1999, 13, 841–850. [Google Scholar] [CrossRef]
- Baddela, V.S.; Michaelis, M.; Tao, X.; Koczan, D.; Brenmoehl, J.; Vanselow, J. Comparative analysis of PI3K-AKT and MEK-ERK1/2 signaling-driven molecular changes in granulosa cells. Reproduction 2025, 169, e240317. [Google Scholar] [CrossRef]
- Soares, M.J.; Iqbal, K.; Kozai, K. Hypoxia and placental development. Birth Defects Res. 2017, 109, 1309–1329. [Google Scholar] [CrossRef] [PubMed]
- Wolosowicz, M.; Prokopiuk, S.; Kaminski, T.W. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int. J. Mol. Sci. 2024, 25, 13691. [Google Scholar] [CrossRef] [PubMed]
- Nalvarte, I.; Antonson, P. Estrogen receptor knockout mice and their effects on fertility. Receptors 2023, 2, 116–126. [Google Scholar] [CrossRef]
- Pakyari, M.; Farrokhi, A.; Maharlooei, M.K.; Ghahary, A. Critical role of transforming growth factor beta in different phases of wound healing. Adv. Wound Care 2013, 2, 215–224. [Google Scholar] [CrossRef]
- Ingman, W.V.; Robertson, S.A. The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev. 2009, 20, 233–239. [Google Scholar] [CrossRef] [PubMed]
- EPA. Lead and Copper Rule. Available online: https://www.epa.gov/dwreginfo/lead-and-copper-rule (accessed on 27 July 2025).
- IS 10500:2012; Drinking Water—Specification. Bureau of Indian Standards: New Delhi, India, 2012.
- European Commission. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). 2020, pp. 1–62. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng (accessed on 27 June 2025).
- EPA. Regional Screening Levels (RSLs)—Generic Tables. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 27 July 2025).
- Umweltbundesamt. Stars 4.2—Database of Substances in Soil, Water and Air Which Are Relevant to Soil and Environmental Protection. Available online: https://www.umweltbundesamt.de/en/portal/stars-42-database-of-substances-in-soil-water-air? (accessed on 27 July 2025).
- Board, C.P.C. Guidance Document for Assessment and Remediation of Contaminated Sites in India; Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India, 2015. [Google Scholar]
Species | Exposure | Results | Reference |
---|---|---|---|
Zebrafish (Danio rerio) | 2.5 or 5 µg/L Pb during embryogenesis until 8 dpf | Delayed growth rates, spine deformities, yolk sac edema, and swim bladder inflation. | [24] |
Freshwater teleost (Astyanax bimaculatus) | 15, 50, or 100 μg/L Pb during gametogenic stages for 28 days | Females had higher follicular atresia and lower vitellogenic follicle ratios. Reduction in seminiferous tubule diameter and spermatozoa production, and an increase in apoptotic germ cells in males. Increased nuclear ERα and ERβ expression. Hormone communication was disturbed in both sexes. | [25] |
Common carp (Cyprinus carpio L.) | 13 or 68 mg Pb/kg d.w. in adults for 6 months | Reduced ovulation, fecundity, and ovulation rates. Immature oocyte production. Impaired vitellogenesis. Pb accumulated in brain tissue. | [26] |
Zebrafish (Danio rerio) | 10 µM Pb in embryos for 24 h | Significant changes in brain transcriptome, including unexposed F2 offspring. Noted epigenetic modifications were linked to neurogenesis and synaptic function, thus compromising brain health. F0 and F2 generation displayed differential expression of genes involved in the endocrine system. | [27] |
Zebrafish (Danio rerio) | 10 µg/L Pb for 3 months in parental fish | Enhanced developmental neurotoxicity in offspring and altered reproductive and thyroid endocrine systems. | [28] |
Catfish (Heteropneustes fossilis) | 0.1, 1.0, 10, or 50 ng/mL Pb for up to 24 h in oocytes | At 4 and 8 h, Pb caused an increase in germinal vesicle breakdown and ovulation across all tested concentrations. Dose-dependent reduction in oocyte response was observed at 16 and 24 h. Pb promoted ovulation more effectively than the control group at 16 and 24 h. | [29] |
Common carp (Cyprinus carpio L.) and Capoeta sp. | Environmental Pb contamination in adults | Average gonad concentration of 0.52 ± 0.09 mg/kg. E2 concentrations were lower in females collected from a heavily polluted sample area. | [30] |
Curimata-pacu (Prochilodus argenteus) | Environmental Pb contamination in adults | Average concentrations were 10-fold greater in liver or muscle tissue compared to safe limits. Males had disorganized and degenerating spermatocysts in the testes. Females had a higher incidence of atretic follicles, disturbed yolk deposition, and overripe oocytes. | [31] |
Species | Exposure | Results | Reference |
---|---|---|---|
Cow (Bos taurus) | Environmental Pb contamination in adults | E2 blood plasma levels are higher in contaminated smelter areas, causing impaired fertility and sterility. | [32] |
Cow (Bos taurus) | Environmental Pb contamination in adults | Higher levels of Pb in follicular fluids and higher MDA levels. | [33] |
Cow (Bos taurus) | Environmental Pb contamination in adults and offspring | Increased morbidity and mortality. Higher rates of stillbirths and calf deaths. Prolonged elevated blood Pb levels. | [34] |
Porcine (Sus scrofa domesticus) | 0.46, 0.63, 0.83, 2.5, or 5.0 mg/10 mL Pb acetate trihydrate for 18 h in oocytes | Release of Mg2+ and K+ in GCs. Reduced total antioxidant and glucose levels. Ca2+ release is lowest in cells cultured with the highest Pb concentration. | [35] |
Porcine (Sus scrofa domesticus) | 0.046–0.250 mg/mL Pb for 18 h in GCs | Inhibition of IGF-1 release from GCs at low doses. Cyclin B1 and CASP3 were impacted. | [36] |
Bovine (Bos taurus) | 1, 2, 3, 5, or 10 μg/mL Pb acetate for 2 h in GCs | ROS accumulation and carbonylation of proteins in GCs. Decreased cell viability and expression markers of cell proliferation genes and cell cycle arrest in GCs. Downregulated Nrf2 and NF-κB TF and increased expression of ER stress marker genes and proapoptotic genes in GCs. | [37] |
Buffalo (Bubalus bubalis) | 0.005–10 μg/mL Pb for 24 h in oocytes | Decreased oocyte viability, hatching, morula/blastocyst yield, ICM, and TCN of blastocysts. Increased morphological abnormalities in oocytes. | [38] |
Bovine (Bos taurus) | 1, 2, 3, 5, or 10 µg/mL Pb acetate for 2 h in GCs | Aberrant blastocyst phenotype. ROS generation and reduced blastocyst cell numbers. | [39] |
Porcine (Sus scrofa domesticus) | 10, 20, or 40 μM Pb acetate for 48 h in SCs | Decreased AMH level expression. Loss of FSH-r integrity and E2 production. Increased AKT and mTOR expression in SCs. | [40] |
Deer (Dama dama) | 15, 30, 60, 125, or 250 μM PbCl2 for 24 h in gametes | Inhibition of antioxidant enzymes and glutathione peroxidase in SCs. | [41] |
Goat (Capra hircus) | 0.5, 5, 10, or 20 ppm Pb acetate for 3 h in mature spermatoza | Decrease in sperm kinematic parameters. Induced spontaneous or premature acrosome reaction. Increased DNA damage and apoptosis. Plasma membrane and acrosomal damage. Collapsed mitochondrial cristae. | [42] |
Ram (Ovis aries) | Up to 5000 ng/mL Pb for 3 h in mature spermatoza | Sperm motility, acrosome integrity, sperm viability, and membrane functionality were negatively correlated with Pb level. | [43] |
Goat (Capra hircus) | 4.5 and 6.0 mg Pb/kg b.w. during gestation until abortion | Increase in GGT and aminotransferase activity in blood. Decrease progesterone level in a dose-dependent manner in the blood. | [44] |
Pig (Sus scrofa domesticus) | 10 mg/kg Pb for 120 days during the postnatal juvenile stage | Decreased body weight, feed efficiency, LH, and E2 levels in serum. | [45] |
Pathway Name | Reproductive Relevance |
---|---|
Estrogen signaling pathway | Female reproductive system development, regulation, and puberty |
GnRH secretion | Controls GnRH release, which regulates reproductive hormone secretion and gonadal response |
GnRH signaling pathway | Regulates LH and FSH pituitary release |
Oocyte meiosis | Key process in the maturation of female gametes |
Ovarian steroidogenesis | Steroid hormone production in ovaries |
Progesterone-mediated oocyte maturation | Involved in the maturation of the oocyte prior to ovulation |
Prolactin signaling pathway | Involved in reproductive health, milk production, and metabolism |
Steroid hormone biosynthesis | Biosynthesis of hormones (i.e., estrogen, progesterone, testosterone) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llewellyn, M.J.; Siddique, M.S.; Ivantsova, E.; Daigneault, B.W.; Baker, T.R.; Martyniuk, C.J. Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock. Pollutants 2025, 5, 28. https://doi.org/10.3390/pollutants5030028
Llewellyn MJ, Siddique MS, Ivantsova E, Daigneault BW, Baker TR, Martyniuk CJ. Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock. Pollutants. 2025; 5(3):28. https://doi.org/10.3390/pollutants5030028
Chicago/Turabian StyleLlewellyn, Mallory J., Muhammad S. Siddique, Emma Ivantsova, Bradford W. Daigneault, Tracie R. Baker, and Christopher J. Martyniuk. 2025. "Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock" Pollutants 5, no. 3: 28. https://doi.org/10.3390/pollutants5030028
APA StyleLlewellyn, M. J., Siddique, M. S., Ivantsova, E., Daigneault, B. W., Baker, T. R., & Martyniuk, C. J. (2025). Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock. Pollutants, 5(3), 28. https://doi.org/10.3390/pollutants5030028