Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates
Abstract
:1. Introduction
- Characterization of the physicochemical properties of CFs.
- Establishment of the efficiency of CFs as a hydrophobic bio-adsorbent of MPPs. Five MPP adsorbates of different plastic materials (e.g., PVC, PP, LDPE, HDPE, and Nylon 6) were evaluated.
- Implementation of straightforward batch adsorption (e.g., static adsorption) tests to determine if physisorption of MPPs takes place on the hydrophobic surface of the CFs at ambient temperature. Batch adsorption tests were specifically implemented to differentiate if the removal of MPPs was due to spontaneous and instantaneous adsorption rather than mechanical retention of plastic debris (e.g., filtration).
- Determination of the effect of the adsorption environment on the adsorption rate of MPPs onto the surface of CFs.
- Establishment of the dominant mechanism driving the adsorption of microplastic MPPs onto the CFs’ hydrophobic surface.
2. Experimental Methodology
2.1. Materials
2.1.1. Adsorbents: Cattail Fibres (CFs) and Activated Carbon (AC)
2.1.2. Microplastic Particles (MPPs)
2.1.3. Adsorption Environment
2.2. Methodology
2.2.1. Cattail Fibre Characterization
2.2.2. Batch Adsorption Tests
2.2.3. Experimental Design
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Infrared Spectroscopy (FTIR) Analysis of Cattail Fibres
3.2. Thermogravimetric Analysis (TGA) of Cattail Fibres
3.3. Contac Angle of Cattail Fibres and MPPs
3.4. Optical and Scanning Electron Microscopy
3.5. Surface Area of CFs and Activated Carbon
3.6. Sieve Analysis of Microplastic Particles
3.7. Batch Adsorption Tests of MMPs onto CFs
3.8. Adsorption Mechanism of MPPs onto the Hydrophobic CFs Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Our Planet is Choking on Plastic. UN Environment Programme. Available online: https://www.unep.org/interactives/beat-plastic-pollution/?gad_source=1&gclid=EAIaIQobChMI-Yf4r5ehhAMVf2lHAR0ldQeREAAYASAAEgIN3_D_BwE (accessed on 10 February 2024).
- Kang, H.; Washington, A.; Capobianco, M.D.; Yan, X.; Cruz, V.V.; Weed, M.; Johnson, J.; Johns, G., III; Brudvig, G.W.; Pan, X.; et al. Concentration-Dependent Photocatalytic Upcycling of Poly (ethylene terephthalate) Plastic Waste. ACS Mater. Lett. 2023, 5, 3032–3041. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kong, X.Y.; Lyu, M.; Tay, X.T.; Đokić, M.; Chin, K.F.; Yang, C.T.; Lee, E.K.; Zhang, J.; Tham, C.Y.; et al. Upcycling of non-biodegradable plastics by base metal photocatalysis. Chem 2023, 9, 2683–2700. [Google Scholar] [CrossRef]
- Ali, I.; Ding, T.; Peng, C.; Naz, I.; Sun, H.; Li, J.; Liu, J. Micro-and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review. Chem. Eng. J. 2021, 423, 130205. [Google Scholar] [CrossRef]
- Mohana, A.A.; Farhad, S.M.; Haque, N.; Pramanik, B.K. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere 2021, 284, 31430. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Xiao, D.; Wang, M.; Gao, Y.; Ma, D. Solar-driven photocatalysis for recycling and upcycling plastics. Appl. Catal. B Environ. 2024, 341, 123357. [Google Scholar] [CrossRef]
- Briassoulis, D. Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. Sci. Total Environ. 2023, 892, 164533. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, B.Y.; Sundaram, B.; Muthukumar, S. Microplastics in Wastewater. A Review of the Current Knowledge on Detection, Occurrence, and Removal. In Emerging Technologies in Wastewater Treatment, 1st ed.; Shah, M.P., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2023; pp. 199–212. [Google Scholar]
- Chen, Z.; Fang, J.; Wei, W.; Ngo, H.H.; Guo, W.; Ni, B.J. Emerging adsorbents for micro/nanoplastics removal from contaminated water: Advances and perspectives. J. Clean. Prod. 2022, 371, 133676. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Wei, W.; Chen, H.; Ni, B.J. Removal of microplastics and nanoplastics from urban waters: Separation and degradation. Water Res. 2022, 221, 118820. [Google Scholar] [CrossRef]
- Anderson, J.C.; Park, B.J.; Palace, V.P. Microplastics. Environ. Pollut. 2016, 218, 269–280. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Wang, J. Ecotoxicological effects of microplastics. J. Hazard. Mater. 2020, 392, 122273. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Leng, Y.; Wang, J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicol. Environ. Saf. 2020, 187, 109788. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chang, Y.; Zhang, T.; Qiao, Y.; Klobučar, G.; Li, M. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environ. Pollut. 2020, 259, 113896. [Google Scholar] [CrossRef] [PubMed]
- Woods, M.N.; Hong, T.J.; Baughman, D.; Andrews, G.; Fields, D.M.; Matrai, P.A. Accumulation and effects of microplastic fibers in American lobster larvae (Homarus americanus). Mar. Pollut. Bull. 2020, 157, 111280. [Google Scholar] [CrossRef] [PubMed]
- Sierra, I.; Chialanza, M.R.; Faccio, R.; Carrizo, D.; Fornaro, L.; Pérez-Parada, A. Identification of microplastics in wastewater samples by means of polarized light optical microscopy. Environ. Sci. Pollut. Res. 2020, 27, 7409–7419. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seijo, A.; Santos, B.; Ferreira da Silva, E.; Cachada, A.; Pereira, R. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ. Chem. 2018, 16, 8–17. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Coffin, S.; Sun, C.; Schlenk, D.; Gan, J. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 2019, 249, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef]
- Huntington, A.; Corcoran, P.L.; Jantunen, L.; Thaysen, C.; Bernstein, S.; Stern, G.A.; Rochman, C.M. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. Facets 2020, 5, 432–454. [Google Scholar] [CrossRef]
- Mintenig, S.M. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic contamination in the san francisco bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.; Norén, F. Screening of Microplastic Particles; Swedish Environmental Research Institute: Stockholm, Sweden, 2014. [Google Scholar]
- Rout, P.R.; Mohanty, A.; Sharma, A.; Miglani, M.; Liu, D.; Varjani, S. Micro-and nanoplastics removal mechanisms in wastewater treatment plants: A review. J. Hazard. Mater. Adv. 2022, 6, 100070. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Removal effectiveness of nanoplastics (<400 nm) with separation processes used for water and wastewater treatment. Water 2020, 12, 635. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Mo, A.; Jiang, J.; Liang, Y.; Cao, X.; He, D. Removal of microplastics in water: Technology progress and green strategies. GAC Green Anal. Chem. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Hong, L.; Shao, J.; Zhang, B.; Yu, J.; Chu, S. An integrated plasma-photocatalytic system for upcycling of polyolefin plastic. ChemSusChem 2023, 28, e202300106. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Iyare, P.U.; Ouki, S.K.; Bond, T. Microplastics removal in wastewater treatment plants: A critical review. Environ. Sci. Water Res. Technol. 2020, 6, 2664–2675. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Zheng, H.; Chen, L.; Li, F. Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. J. Hazard. Mater. 2021, 420, 126599. [Google Scholar] [CrossRef]
- Rius-Ayra, O.; Carmona-Ruiz, M.; Llorca-Isern, N. Superhydrophobic cotton fabrics for effective removal of high-density polyethylene and polypropylene microplastics: Insights from surface and colloidal analysis. J. Colloid Interface Sci. 2023, 646, 763–774. [Google Scholar] [CrossRef]
- Hendricks, D. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological; CRC Press: Boca Raton, FL, USA, 2016; pp. 3–19. [Google Scholar]
- Shah, M.P. (Ed.) Emerging Technologies in Wastewater Treatment; Taylor & Francis Group: Boca Raton, FL, USA, 2023; pp. 1–249. [Google Scholar]
- Islam, S.U. (Ed.) Environmental Nanotechnology for Water Purification; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–329. [Google Scholar]
- Deepti, P.M.; Purkait, M.K. Emerging Technologies and Their Advancements Toward Wastewater Treatment from Various Industries. In Emerging Technologies in Wastewater Treatment; Shah, M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2023; pp. 51–66. [Google Scholar]
- Zhang, Y.; Jiang, H.; Bian, H.; Wang, H.; Wang, C. A critical review of control and removal strategies for microplastics from aquatic environments. J. Environ. Chem. Eng. 2021, 9, 105463. [Google Scholar] [CrossRef]
- Yogarathinam, L.T.; Usman, J.; Othman, M.H.; Ismail, A.F.; Goh, P.S.; Gangasalam, A.; Adam, M.R. Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution. J. Hazard. Mater. 2022, 424, 127298. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Prakash, S.; Saini, G. Natural Coagulants (Moringa oleifera and Benincasa hispida) based removal of Microplastics. Clean. Water. 2024, 1, 100010. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Yuan, J.; Wang, S.; Ding, Y.; Wu, Y.; Gao, C. A type of thiophene-bridged silica aerogel with a high adsorption capacity. Inorg. Chem. Front. 2018, 5, 1894–1901. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Surface functionalized cellulose fibers–a renewable adsorbent for removal of plastic nanoparticles from water. J. Hazard. Mater. 2021, 413, 125301. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Hamid, A.K.; Krebsbach, S.A.; He, J.; Wang, D. Critical review of microplastics removal from the environment. Chemosphere 2022, 293, 133557. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.A.; Westerhoff, P.; Yoon, Y.; Sedlak, D.L. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environ. Eng. Sci. 2003, 20, 449–469. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, E.; Smalling, K.L.; Ahrens, L.; Gros, M.; Miglioranza, K.S.; Picó, Y.; Schoenfuss, H.L. Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ. Toxicol. Chem. 2019, 38, 46–60. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Razzak, S.A.; Hassan, I.; Hossain, M.M. Microplastics in Freshwater and Drinking Water: Sources, Impacts, Detection, and Removal Strategies. Water Air Soil Pollut. 2023, 234, 673. [Google Scholar] [CrossRef]
- Magalhães, S.; Alves, L.; Medronho, B.; Romano, A.; Rasteiro, M.D. Microplastics in ecosystems: From current trends to bio-based removal strategies. Molecules 2020, 25, 3954. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, M.C.; Lu, Y.; Li, Z.; Liu, C.; Liu, Z.; Mei, C.; Wu, Q. Cellulose nanofiber-coated delignified wood as an efficient filter for microplastic removal. Prog. Nat. Sci. Mater. Int. 2024, in press.
- Islam, M.R.; Rahman, M.S. Sustainable Water Purification; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 329. [Google Scholar]
- Quintelas, C.; Mesquita, D.; Campos Ferreira, E. Bio Strategies for the Removal of Contaminants of Emerging Concern from Wastewater. In Emerging Technologies in Waste Water Treatment; Shah, M., Ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 171–183. [Google Scholar]
- Ali, I.; Tan, X.; Li, J.; Peng, C.; Wan, P.; Naz, I.; Duan, Z.; Ruan, Y. Innovations in the development of promising adsorbents for the remediation of Microplastics and Nanoplastics—A critical review. Water Res. 2023, 230, 119526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Khor, S.M. Emerging absorption-based techniques for removing microplastics and nanoplastics from actual water bodies. TrAC Trends Anal. Chem. 2024, 170, 117465. [Google Scholar] [CrossRef]
- Wang, H.P.; Huang, X.H.; Chen, J.N.; Dong, M.; Nie, C.Z.; Qin, L. Modified superhydrophobic magnetic Fe3O4 nanoparticles for removal of microplastics in liquid foods. Chem. Eng. J. 2023, 476, 146562. [Google Scholar] [CrossRef]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of microplastics using bionanomaterials: A review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Khan, F.; Ahmad, A. Cauliflower leave, an agricultural waste biomass adsorbent, and its application for the removal of MB dye. Int. J. Anal. Chem. 2016, 252–261. [Google Scholar]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A review on the synthesis and characterization of biomass-derived carbons. C 2018, 4, 63. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem. 2005, 7, 190–195. [Google Scholar] [CrossRef]
- van Dam, J.E. Natural fibres and the environment: Environmental benefits of natural fibre production and use. In Proceedings of the Symposium on Natural Fibres, Rome, Italy, 20 October 2008; pp. 3–17. [Google Scholar]
- Spacilova, M.; Dytrych, P.; Lexa, M.; Wimmerova, L.; Masin, P.; Kvacek, R.; Solcova, O. An Innovative Sorption Technology for Removing Microplastics from Wastewater. Water 2023, 15, 892. [Google Scholar] [CrossRef]
- Ha, T.T.; Viet, N.M.; Thanh, P.T.; Quan, V.T. Loofah plant—Derived biodegradable superhydrophobic sponge for effective removal of oil and microplastic from water. Environ. Technol. Innov. 2023, 32, 103265. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Neto, A.D.; Moura, M.C.; Dantas, T.C. Use of surfactant-modified adsorbents in the removal of microplastics from wastewater. J. Environ. Chem. Eng. 2023, 11, 110827. [Google Scholar] [CrossRef]
- Fernández, V.; Khayet, M. Evaluation of the surface free energy of plant surfaces: Toward standardizing the procedure. Front. Plant Sci. 2015, 6, 145486. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Talebian-Kiakalaieh, A.; Zhang, S.; Hashem, E.; Guo, M.; Qiao, S. Recent advancement on photocatalytic plastic upcycling. Chem. Sci. 2024, 15, 1611–1637. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, S.; Gui, W.; Li, H.; Wu, J.; Wang, H.; Yang, J. Photocatalytic Upcycling of Plastic Waste: Mechanism, Integrating Modus, and Selectivity. Small Struct. 2023, 4, 2300142. [Google Scholar] [CrossRef]
- Banik, H. Selected Properties of Cattail Fibre for Biomedical Applications. Master’s Thesis, Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, 2022. [Google Scholar]
- Chakma, K.; Cicek, N.; Rahman, M. Characterization of cattail fibre chemical groups by Fourier-Transform infrared Spectroscopy (FTIR). In Proceedings of the Manitoba Institute of Materials (MIM) Annual Conference; University of Manitoba: Winnipeg, MB, Canada, 2018. [Google Scholar]
- Barragán, E.U.; Guerrero, C.F.; Zamudio, A.M.; Cepeda, A.B.; Heinze, T.; Koschella, A. Isolation of cellulose nanocrystals from Typha domingensis named southern cattail using a batch reactor. Fibers Polym. 2019, 20, 1136–1144. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 7, 97–118. [Google Scholar] [CrossRef]
- Cao, S.; Dong, T.; Xu, G.; Wang, F. Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environ. Technol. 2016, 37, 3193–3199. [Google Scholar] [CrossRef]
- Bhuiyan, Z. The Effect of Scouring on Cattail Fibre Properties for Biomedical Applications. Master Academic Dissertation, University of Manitoba, Winnipeg, MB, Canada, 2019. [Google Scholar]
- Dong, T.; Xu, G.; Wang, F. Oil spill cleanup by structured natural sorbents made from cattail fibers. Ind. Crops Prod. 2015, 76, 25–33. [Google Scholar] [CrossRef]
- Cui, F.; Li, H.; Chen, C.; Wang, Z.; Liu, X.; Jiang, G.; Cheng, T.; Bai, R.; Song, L. Cattail fibers as source of cellulose to prepare a novel type of composite aerogel adsorbent for the removal of enrofloxacin in wastewater. Int. J. Biol. Macromol. 2021, 191, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, J.; Li, C.; Wang, F.; Shi, L.; Tao, M.; Weng, B.; Yan, B.; Guo, Y.; Chen, Y. Characterization of potential cellulose fiber from cattail fiber: A study on micro/nano structure and other properties. Int. J. Biol. Macromol. 2021, 193, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kamali Moghaddam, M. Typha leaves fiber and its composites: A review. J. Nat. Fibers. 2022, 19, 4993–5007. [Google Scholar] [CrossRef]
- Kamali Moghaddam, M. Structural and thermal properties of cellulose microfiber isolated from Typha australis by sequential alkali-oxidative treatment. J. Nat. Fibers. 2022, 19, 10526–10538. [Google Scholar] [CrossRef]
- Guechi, E.; Benabdesselam, S. Removal of cadmium and copper from aqueous media by biosorption on cattail (Typha angustifolia) leaves: Kinetic and isotherm studies. Water Treat. Desalin. 2020, 173, 367–382. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Kar, M.; Pringle, J.M. Fundamentals of Ionic Liquids: From Chemistry to Applications; John Wiley & Sons: Weinheim, Germany, 2017; p. 250. [Google Scholar]
- Al-Hakkak, J.S.; Barbooti, M.M. Thermogravimetric study on typha (Typha angustifolia L.). J. Therm. Anal. 1989, 35, 815–821. [Google Scholar] [CrossRef]
- Sebio-Punal, T.; Naya, S.; López-Beceiro, J.; Tarrío-Saavedra, J.; Artiaga, R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 2012, 109, 1163–1167. [Google Scholar] [CrossRef]
- Chakma, K.; Cicek, N.; Rahman, M. Fiber extraction efficiency, quality and characterization of cattail fibres for textile applications. In Proceedings of the Canadian Society for Bioengineering Conference (CSBE), Winnipeg, MB, Canada, 6–10 August 2017. [Google Scholar]
- Ifelebuegu, A.O.; Johnson, A. Nonconventional low-cost cellulose-and keratin-based biopolymeric sorbents for oil/water separation and spill cleanup: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 964–1001. [Google Scholar] [CrossRef]
- Schellbach, S.L.; Monteiro, S.N.; Drelich, J.W. A novel method for contact angle measurements on natural fibers. Mater. Lett. 2016, 164, 599–604. [Google Scholar] [CrossRef]
- Accu Dyne TestTM. Critical Surface Tension and Contact Angle with Water for Various Polymers. Available online: https://www.accudynetest.com/polytable_03.html?sortby=contact_angle (accessed on 27 February 2024).
- de Luna, M.S.; Galizia, M.; Wojnarowicz, J.; Rosa, R.; Lojkowski, W.; Leonelli, C.; Ancierno, D.; Filippone, G. Dispersing hydrophilic nanoparticles in hydrophobic polymers: HDPE/ZnO nanocomposites by a novel template-based apprach. eXPRESS Polym. Lett. 2014, 8, 362–372. [Google Scholar] [CrossRef]
- Siddiqa, A.J.; Chaudhury, K.; Adhikari, B. Hydrophilic low density polyethylene (LDPE) films for cell adhesion and proliferation. Res. Rev. J. Med. Chem. 2005, 1, 143–154. [Google Scholar]
- Nieto, D.R.; Santese, F.; Toth, R.; Posocco, P.; Pricl, S.; Fermeglia, M. Simple, fast, and accurate in silico estimations of contact angle, surface tension, and work of adhesion of water and oil nanodroplets on amorphous polypropylene surfaces. ACS Appl. Mater. Interfaces 2012, 4, 2855–2859. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, P.L.; Bortoleto, J.R.; Drrant, S.F. Contact Angle and Wettability of Commercial Polymers after Plasma Treatment. LJP 2022, 22, 13–33. [Google Scholar]
- Pesonen-Leinonen, E. Determination of Cleanability of Plastic Surfaces. PhD. Dissertation, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland, 2005; pp. 1–67. [Google Scholar]
- Biolin Scientific. Attension. Technology Note 7. Influence of Surface Roughness on Contact Angle and Wettability. Available online: https://www.biolinscientific.com (accessed on 27 February 2024).
- Rahman, M.; Cicek, N.; Chakma, K. The optimum parameters for fibre yield (%) and characterization of Typha latifolia L. fibres for textile applications. Fibers Polym. 2021, 22, 1543–1555. [Google Scholar] [CrossRef]
- Seo, Y.B.; Lee, M.W. Use of non-wood fibres (from cattails and red algae) and their effects on paper opacity. Appita 2011, 64, 445–449. [Google Scholar]
- Wong, C.; McGowan, T.; Bajwa, S.G.; Bajwa, D.S. Impact of fiber treatment on the oil absorption characteristics of plant fibers. BioResources 2016, 11, 6452–6463. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Shen, R.; Gao, J.; Li, J. An efficient approach to prepare water-redispersible starch nanocrystals from waxy potato starch. Polymers 2021, 13, 431. [Google Scholar] [CrossRef] [PubMed]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef]
- Mays, T.J. A new classification of pore sizes. Stud. Surf. Sci. Catal. 2007, 160, 57–62. [Google Scholar]
- Vinayagam, V.; Murugan, S.; Kumaresan, R.; Narayanan, M.; Sillanpää, M.; Dai Viet, N.V.; Kushwaha, O.S.; Jenis, P.; Potdar, P.; Gadiya, S. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review. Chemosphere 2022, 300, 134597. [Google Scholar] [CrossRef] [PubMed]
- Lampman, S.; Bonnie Sanders, B.; Hrivnak, N.; Kinson, J.; Polakowski, C. Characterization and Failure Analysis of Plastics; ASM International: Cambridge, MA, USA, 2003. [Google Scholar]
- Kent, R. Energy Management in Plastics Processing: Strategies, Targets, Techniques, and Tools; Elsevier: Cambridge, MA, USA, 2018; p. 441. [Google Scholar]
- Chackalamannil, S.; Rotella, D.; Ward, S. (Eds.) Comprehensive Medicinal Chemistry III; Elsevier: Cambridge, MA, USA, 2017. [Google Scholar]
- Letcher, T.M. Storing Energy: With Special Reference to Renewable Energy Sources; Elsevier: Cambridge, MA, USA, 2022. [Google Scholar]
- Godwin, A.D.; Kutz, M. Applied Plastics Engineering Handbook; William Andrew Applied Science Publishers: Cambridge, MA, USA, 2017. [Google Scholar]
- Tilton, R.D.; Robertson, C.R.; Gast, A.P. Manipulation of hydrophobic interactions in protein adsorption. Langmuir 1991, 7, 2710–2718. [Google Scholar] [CrossRef]
- Puddu, V.; Perry, C.C. Peptide adsorption on silica nanoparticles: Evidence of hydrophobic interactions. ACS Nano 2012, 6, 6356–6363. [Google Scholar] [CrossRef] [PubMed]
- Baldi, L.D.; Lamazaki, E.T.; Atvars, T.D. Evaluation of the polarity of polyamide surfaces using the fluorescence emission of pyrene. Dyes Pigm. 2008, 76, 669–676. [Google Scholar] [CrossRef]
- Guo, S.; Zou, Z.; Chen, Y.; Long, X.; Liu, M.; Li, X.; Tan, J.; Chen, R. Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of rhodamine B from water using corn straw biochar. Environ. Pollut. 2023, 320, 121060. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.D.; Langhus, B.G.; Patel, C. Technical Summary of Oil & Gas Produced Water Treatment Technologies; All Consulting, LLC.: Tulsa, OK, USA, 2005. [Google Scholar]
- Garde, S. Hydrophobic interactions in context. Nature 2015, 517, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Pashalidis, I.; Kayan, B.; Kalderis, D. Microplastics as carriers of hydrophilic pollutants in an aqueous environment. J. Mol. Liq. 2022, 350, 118182. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environ. Pollut. 2023, 343, 123190. [Google Scholar] [CrossRef] [PubMed]
Adsorbent Material | Microplastic Particles | Distilled Water, DW Solution Concentration [wt%] Volume: 200 mL | Produced Water, PW Solution Concentration [wt%] Volume: 200 mL |
---|---|---|---|
0.1 | 0.1 | ||
PVC | 0.3 | 0.3 | |
0.5 | 0.5 | ||
0.1 | 0.1 | ||
PP | 0.3 | 0.3 | |
0.5 | 0.5 | ||
0.1 | 0.1 | ||
CFs or AC | LDPE | 0.3 | 0.3 |
0.3 g | 0.5 | 0.5 | |
T = 24 °C | 0.1 | 0.1 | |
Nylon 6 | 0.3 | 0.3 | |
0.5 | 0.5 | ||
0.1 | 0.1 | ||
HDPE | 0.3 | 0.3 | |
0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagwat, K.P.; Rodrigue, D.; Romero-Zerón, L. Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates. Pollutants 2024, 4, 231-250. https://doi.org/10.3390/pollutants4020015
Bhagwat KP, Rodrigue D, Romero-Zerón L. Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates. Pollutants. 2024; 4(2):231-250. https://doi.org/10.3390/pollutants4020015
Chicago/Turabian StyleBhagwat, Kalyani Prasad, Denis Rodrigue, and Laura Romero-Zerón. 2024. "Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates" Pollutants 4, no. 2: 231-250. https://doi.org/10.3390/pollutants4020015
APA StyleBhagwat, K. P., Rodrigue, D., & Romero-Zerón, L. (2024). Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates. Pollutants, 4(2), 231-250. https://doi.org/10.3390/pollutants4020015