Mapping the Spatial Distribution of Natural Gamma Dose Rates as a Baseline Study in the Province of Asti, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Measurements and Dosimetry
Radiometric Mapping
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NBCR | Nuclear, Biological, Chemical, and Radiological |
TAS | Topography Applied to Rescue |
UCL | Local Command Unit |
VVF | Vigili del Fuoco (Firefighters) |
References
- Rühm, W.; Azizova, T.; Bouffler, S.; Cullings, H.M.; Grosche, B.; Little, M.P.; Shore, R.S.; Walsh, L.; Woloschak, G.E. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates. J. Radiat. Res. 2018, 59, ii1–ii10. [Google Scholar] [CrossRef]
- Shankramma, K.; Nagaraja, K.; Sathish, L.A.; Kumar, K.C. A review on natural gamma radiation dose levels and its health effects. Int. J. Health Allied Sci. 2022, 11, 1. [Google Scholar] [CrossRef]
- Egidi, P. Introduction to Naturally Occurring Radioactive Material; Technical Report; Oak Ridge National Lab.: Grand Junction, CO, USA, 1997.
- Al-khawlany, A.H.; Khan, A.; Pathan, J.; Fatema, I. Assessment of potential radiological risks due to natural gamma radiations in some selected rock samples using y-ray spectrometry. J. Phys. Conf. Ser. 2020, 1644, 012004. [Google Scholar] [CrossRef]
- Alwaeli, M.; Mannheim, V. Investigation into the current state of nuclear energy and nuclear waste management—A state-of-the-art review. Energies 2022, 15, 4275. [Google Scholar] [CrossRef]
- Johansson, T.B.; Steen, P. Radioactive Waste from Nuclear Power Plants; Univ of California Press: Berkeley, CA, USA, 2022. [Google Scholar]
- Khan, H.A.A.; Alshukri, A.S. Evaluation of environmental and health risks related with the management of medical waste in al najaf city. J. Eng. Sci. Technol. 2020, 15, 4383–4391. [Google Scholar]
- Menon, S.; Kumar, L.S.V. Weaponizing radioactive medical waste-The looming threat. Int. J. Nucl. Secur. 2019, 5, 4. [Google Scholar] [CrossRef]
- Sahoo, P.; Joseph, J. Radioactive hazards in utilization of industrial by-products: Comprehensive review. J. Hazard. Toxic Radioact. Waste 2021, 25, 03121001. [Google Scholar] [CrossRef]
- Kant, K.; Gupta, R.; Kumari, R.; Gupta, N.; Garg, M. Natural radioactivity in Indian vegetation samples. Int. J. Radiat. Res. 2015, 13, 143–150. [Google Scholar]
- Kovler, K.; Friedmann, H.; Michalik, B.; Schroeyers, W.; Tsapalov, A.; Antropov, S.; Bituh, T.; Nicolaides, D. Basic aspects of natural radioactivity. In Naturally Occurring Radioactive Materials in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 13–36. [Google Scholar] [CrossRef]
- Lolila, F.; Mazunga, M.S. Measurements of natural radioactivity and evaluation of radiation hazard indices in soils around the Manyoni uranium deposit in Tanzania. J. Radiat. Res. Appl. Sci. 2023, 16, 100524. [Google Scholar] [CrossRef]
- René, M.; Akitsu, T. Nature, sources, resources, and production of thorium. In Descriptive Inorganic Chemistry Researches of Metal Compounds; IntechOpen: London, UK, 2017; pp. 201–212. [Google Scholar] [CrossRef]
- Abbasi, A.; Kurnaz, A.; Turhan, Ş.; Mirekhtiary, F. Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J. Radioanal. Nucl. Chem. 2020, 324, 203–210. [Google Scholar] [CrossRef]
- Malikova, I.; Strakhovenko, V.; Ustinov, M. Uranium and thorium contents in soils and bottom sediments of lake Bolshoye Yarovoye, western Siberia. J. Environ. Radioact. 2020, 211, 106048. [Google Scholar] [CrossRef]
- Missimer, T.M.; Teaf, C.; Maliva, R.G.; Danley-Thomson, A.; Covert, D.; Hegy, M. Natural radiation in the rocks, soils, and groundwater of Southern Florida with a discussion on potential health impacts. Int. J. Environ. Res. Public Health 2019, 16, 1793. [Google Scholar] [CrossRef]
- Patel, K.S.; Sharma, S.; Maity, J.P.; Martín-Ramos, P.; Fiket, Ž.; Bhattacharya, P.; Zhu, Y. Occurrence of uranium, thorium and rare earth elements in the environment: A review. Front. Environ. Sci. 2023, 10, 1058053. [Google Scholar] [CrossRef]
- Zanin, Y.N.; Zamirailova, A.; Eder, V. Uranium, thorium, and potassium in black shales of the Bazhenov Formation of the West Siberian marine basin. Lithol. Miner. Resour. 2016, 51, 74–85. [Google Scholar] [CrossRef]
- Al-Khawlany, A.H.; Khan, A.; Pathan, J. Review on studies in natural background radiation. Radiat. Prot. Environ. 2018, 41, 215–222. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation; Report to the General Assembly, with Scientific Annexes; United Nations: Vienna, Austria, 2020; E.00.IX.3; pp. 1–654. [Google Scholar]
- Till, J.E.; Grogan, H.A. Radiological Risk Assessment and Environmental Analysis; Oxford University Press: Oxford, UK, 2008. [Google Scholar] [CrossRef]
- Tye, A.; Milodowski, A.; Smedley, P. Distribution of Natural Radioactivity in the Environment; British Geological Survey: Nottingham, UK, 2017. [Google Scholar]
- Marques, L.; Vale, A.; Vaz, P. State-of-the-art mobile radiation detection systems for different scenarios. Sensors 2021, 21, 1051. [Google Scholar] [CrossRef]
- Musa, I.S.M. Environmental radiation: Natural radioactivity monitoring. In Ionizing and Non-Ionizing Radiation; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Omori, Y.; Tokonami, S.; Sahoo, S.K.; Ishikawa, T.; Sorimachi, A.; Hosoda, M.; Kudo, H.; Pornnumpa, C.; Nair, R.R.K.; Jayalekshmi, P.A.; et al. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J. Radiol. Prot. 2016, 37, 111. [Google Scholar] [CrossRef]
- Delacroix, D.; Guerre, J.P.; Leblanc, P.; Hickman, C. Radionuclide and radiation protection data handbook 2002. Radiat. Prot. Dosim. 2002, 98, 1–168. [Google Scholar] [CrossRef]
- Martin, J.E. Physics for Radiation Protection: A Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Shapiro, J. Radiation Protection: A Guide for Scientists, Regulators, and Physicians; La Editorial UPR: San Juan, Puerto Rico, 2002. [Google Scholar] [CrossRef]
- Bossew, P.; Cinelli, G.; Hernández-Ceballos, M.; Cernohlawek, N.; Gruber, V.; Dehandschutter, B.; Menneson, F.; Bleher, M.; Stöhlker, U.; Hellmann, I.; et al. Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate. J. Environ. Radioact. 2017, 166, 296–308. [Google Scholar] [CrossRef]
- Veiga, R.; Sanches, N.; Anjos, R.; Macario, K.; Bastos, J.; Iguatemy, M.; Aguiar, J.G.; Santos, A.; Mosquera, B.; Carvalho, C.; et al. Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas. 2006, 41, 189–196. [Google Scholar] [CrossRef]
- Kotb, N.; Abd El Ghany, M.; El-Sayed, A.A. Radiological assessment of different monazite grades after mechanical separation from black sand. Sci. Rep. 2023, 13, 15389. [Google Scholar] [CrossRef]
- Mishra, M.K.; Jha, S.; Patra, A.C.; Mishra, D.; Sahoo, S.; Sahu, S.; Verma, G.P.; Saindane, S.S.; Mitra, P.; Garg, S.; et al. Generation of map on natural environmental background absorbed dose rate in India. J. Environ. Radioact. 2023, 262, 107146. [Google Scholar] [CrossRef]
- Veerasamy, N.; Murugan, R.; Kasar, S.; Inoue, K.; Kavasi, N.; Balakrishnan, S.; Arae, H.; Fukushi, M.; Sahoo, S. Geochemical characterization of monazite sands based on rare earth elements, thorium and uranium from a natural high background radiation area in Tamil Nadu, India. J. Environ. Radioact. 2021, 232, 106565. [Google Scholar] [CrossRef]
- Tari, M.; Zarandi, S.A.M.; Mohammadi, K.; Zare, M.R. The measurement of gamma-emitting radionuclides in beach sand cores of coastal regions of Ramsar, Iran using HPGe detectors. Mar. Pollut. Bull. 2013, 74, 425–434. [Google Scholar] [CrossRef]
- Shuaibu, H.K.; Khandaker, M.U.; Alrefae, T.; Bradley, D. Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia. Mar. Pollut. Bull. 2017, 119, 423–428. [Google Scholar] [CrossRef]
- Yasmin, S.; Barua, B.S.; Khandaker, M.U.; Kamal, M.; Rashid, M.A.; Sani, S.A.; Ahmed, H.; Nikouravan, B.; Bradley, D.A. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication. Results Phys. 2018, 8, 1268–1274. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, W.; Liu, J.; Liang, X.; Yuan, W.; Ouyang, Q.; Liu, S.; Gok, C.; Wang, J.; Song, G. Preliminary Screening of Soils Natural Radioactivity and Metal (loid) Content in a Decommissioned Rare Earth Elements Processing Plant, Guangdong, China. Int. J. Environ. Res. Public Health 2022, 19, 14566. [Google Scholar] [CrossRef]
- Rani, A.; Mittal, S.; Mehra, R.; Ramola, R. Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl. Radiat. Isot. 2015, 101, 122–126. [Google Scholar] [CrossRef]
- Murthuza, K.M.; Surumbarkuzhali, N.; Thirukumaran, V.; Gandhi, M.S.; Ravi, A.; Ganesh, D.; Ravisankar, R. Statistical analysis of natural radioactivity measurements for the soil of Tiruvannamalai District, Tamilnadu, India. Mater. Today Proc. 2022, 65, 2606–2614. [Google Scholar] [CrossRef]
- Ahmed, N.K. Measurement of natural radioactivity in building materials in Qena city, Upper Egypt. J. Environ. Radioact. 2005, 83, 91–99. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Singh, B.; Singh, S. Natural activities of 238U, 232Th and 40K in some Indian building materials. Radiat. Meas. 2003, 36, 465–469. [Google Scholar] [CrossRef]
- Kocsis, E.; Tóth-Bodrogi, E.; Peka, A.; Adelikhah, M.; Kovács, T. Radiological impact assessment of different building material additives. J. Radioanal. Nucl. Chem. 2021, 330, 1517–1526. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr. Build. Mater. 2021, 268, 121087. [Google Scholar] [CrossRef]
- Amaral, E.; Amundsen, I.; Barišic, D.; Booth, P.; Clark, D.; Ditmars, J.; Dlouhy, Z.; Drury, N.; Gehrche, K.; Gnugnoli, G. Characterization of Radioactively Contaminated Sites for Remediation Purposes; IAEA-Tecdoc-1017; International Atomic Energy Agency: Vienna, Austria, 1998. [Google Scholar]
- International Commission on Radiation Units and Measurements. Determination of Dose Equivalents Resulting from External Radiation Sources; ICRU: Ottawa, ON, Canada, 1985. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation and others. Summary of Low-Dose Radiation Effects on Health; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Provincia di Asti. VIA-Progetti e Lavori in Corso. 2023. Available online: https://www.provincia.asti.it/it/page/progetti-e-lavori (accessed on 13 November 2023).
- Najam, L.; AL-Jomaily, F.; AL-Farha, E. Natural radioactivity levels of limestone rocks in northern Iraq using gamma spectroscopy and nuclear track detector. J. Radioanal. Nucl. Chem. 2011, 289, 709–715. [Google Scholar] [CrossRef]
- Chiaberto, E.; Falletti, P.; Magnoni, M. Radon mapping in Piedmont (North-West Italy): A radio-geo-lithological approach. J. Eur. Radon Assoc. 2022, 3, 7719. [Google Scholar] [CrossRef]
Meas. | Min | Max | Mean | Median | Mode | STD | Variance | Range | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|
A21 | 34 | 0.06 | 0.22 | 0.0906 | 0.0849 | 0.06 | 0.0365 | 0.0013 | 0.16 | 2.1848 | 5.2456 |
A33 | 16 | 0.08 | 0.16 | 0.1162 | 0.11 | 0.11 | 0.0171 | 0.0003 | 0.08 | 0.5822 | 2.8249 |
SS706 | 21 | 0.11 | 0.13 | 0.1205 | 0.12 | 0.12 | 0.0067 | 4.47 × | 0.02 | −0.0519 | −0.4978 |
CE | 49 | 0.1 | 0.42 | 0.2161 | 0.19 | 0.18 | 0.0803 | 0.0064 | 0.319 | 1.112 | 0.7158 |
NE | 87 | 0.06 | 0.13 | 0.1055 | 0.10 | 0.09 | 0.0165 | 0.0002 | 0.07 | 0.1827 | −0.8029 |
NW | 52 | 0.04 | 0.15 | 0.1133 | 0.13 | 0.14 | 0.0385 | 0.0015 | 0.109 | −1.1742 | −0.3672 |
SE | 55 | 0.08 | 0.16 | 0.1187 | 0.11 | 0.11 | 0.0179 | 0.0003 | 0.08 | 0.3571 | 0.2118 |
SW | 58 | 0.05 | 0.17 | 0.1241 | 0.12 | 0.12 | 0.0256 | 0.0007 | 0.12 | −0.4804 | 0.7628 |
Meas. | Min | Max | Mean | Median | Mode | STD | Variance | Range | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|
NE | 100 | 0.07 | 0.14 | 0.1125 | 0.12 | 0.12 | 0.0177 | 0.0003 | 0.07 | −0.5242 | −0.6049 |
NW | 120 | 0.04 | 0.23 | 0.104 | 0.10 | 0.10 | 0.0282 | 0.0008 | 0.19 | 1.0239 | 3.0236 |
SE | 226 | 0.03 | 0.19 | 0.1021 | 0.11 | 0.11 | 0.0229 | 0.0005 | 0.16 | −0.1807 | 1.0869 |
SW | 170 | 0.06 | 0.15 | 0.1025 | 0.10 | 0.11 | 0.0164 | 0.0003 | 0.09 | −0.2098 | 0.1268 |
Natural Gamma Dose Rate [Sv·h] Median | Radio-Geo-Lithological Unit * | 222Rn [Bq·m] Median [49] | 238U [Bq·kg] Median [49] | |
---|---|---|---|---|
CE | 0.2161 | Upper Tanaro, Stura di Demonte, Grana-Maira, Varaita, upper Po, Pellice-Chisone, and Chisola fluvial deposits; Upper Pleistocene–present | 116 | 28 |
NE | 0.1093 | Marine, transitional, and continental deposits; Pliocene | 72 | 47 |
NW | 0.1068 | Marine, transitional, and continental deposits; Pliocene | 72 | 47 |
SE | 0.1054 | Rivoli-Avigliana morainic amphitheater glacial deposits; Pleistocene–Holocene | 85 | 27 |
SW | 0.1080 | Marine, transitional, and continental deposits; Pliocene | 72 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Monte, O.; Paola, A.; Pérez, B.; Sajo-Bohus, L.; Palacios Fernández, D. Mapping the Spatial Distribution of Natural Gamma Dose Rates as a Baseline Study in the Province of Asti, Italy. Pollutants 2024, 4, 174-186. https://doi.org/10.3390/pollutants4020011
Del Monte O, Paola A, Pérez B, Sajo-Bohus L, Palacios Fernández D. Mapping the Spatial Distribution of Natural Gamma Dose Rates as a Baseline Study in the Province of Asti, Italy. Pollutants. 2024; 4(2):174-186. https://doi.org/10.3390/pollutants4020011
Chicago/Turabian StyleDel Monte, Omar, Alessandro Paola, Bertin Pérez, Laszlo Sajo-Bohus, and Daniel Palacios Fernández. 2024. "Mapping the Spatial Distribution of Natural Gamma Dose Rates as a Baseline Study in the Province of Asti, Italy" Pollutants 4, no. 2: 174-186. https://doi.org/10.3390/pollutants4020011
APA StyleDel Monte, O., Paola, A., Pérez, B., Sajo-Bohus, L., & Palacios Fernández, D. (2024). Mapping the Spatial Distribution of Natural Gamma Dose Rates as a Baseline Study in the Province of Asti, Italy. Pollutants, 4(2), 174-186. https://doi.org/10.3390/pollutants4020011