Up-the-Pipe Solutions: A Best Practice Framework to Engage Communities in Reducing Chemical Contamination in Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Community Engagement Context
2.2. The Natural Step Framework
- Concentrations of substances extracted from the Earth’s crust;
- Concentrations of substances produced by society;
- Degradation by physical means;
- Within society, there are no structural obstacles to people’s health, influence, competence, impartiality, and meaning.
- The system as a whole (the tree within its surrounding environment);
- The principles of what it is to be sustainable (the tree’s trunk);
- The strategies that will enable society to return to sustainability once more (the branches);
- The actions and tools that will enable the implementation of the strategy (the leaves) [23].
2.3. Pilot Educational and Community Engagement Initiative
- An introductory presentation with two school-based science classes to introduce the project and present the survey and web video;
- A survey provided to the students by their teacher to collect data and raise household awareness—‘What goes down the drain in your house?’;
- A web video to set the scene for the survey, which introduced the ‘Up-the-Pipe Solutions’ focus on emerging contaminants from household waste, the journey through a municipal sewage treatment system, and the potential impacts on waterways;
- An independent classroom activity in which students were encouraged to research recipes for eco-friendly body care and cleaning products and produce posters to enter a competition;
- An ‘Up-the-Pipe Solutions’ hui (a meeting often convened by Māori community leaders) at a marae (Māori communal facility that serves as a focus point for meetings and other cultural events).
2.4. Final Community Hui/Workshop
3. Results
3.1. Project Initiation
3.2. The School Survey
3.3. The Video
3.4. The Hui/Workshop
- The key message from the ‘Up-the-Pipe’ video;
- Their family’s secret natural cleaning recipe;
- Their own natural cleaning recipe (based on library or web resources).
- That parents and teachers are involved together in children’s learning;
- That family and community knowledge is incorporated into the curriculum and teaching practices.
4. Discussion
- Continue to characterise the risk of chemicals commonly found in household products;
- Maintain a close relationship with communities through programmes such as Para Kore (Marae Zero Waste) and building reference material that can be incorporated into the school curriculum;
- Seek out partnerships with key industries dedicated to creating healthier products for people and the environment;
- Assist organisations, such as The New Zealand Ecolabelling Trust, with the development of a labelling system for house products, similar to the Star rating for energy and water use, that can guide people towards more sustainable products;
- Facilitate community outreach through multiple media pathways, e.g., web-based sites, public libraries, and schools;
- Continue to work with school children, as they are more likely to adapt to sustainable habits and can influence their parents, who are the purchasers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casida, J.E.; Quistad, G.B. Golden age of insecticide research: Past, present, or future? Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ. Health Perspect. 2003, 111, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.M. The environmental trade-offs of human existence: Opening eyes wide shut. Integr. Environ. Assess. Manag. 2017, 13, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Jin, X.; Nakada, N.; Sumpter, J.P. Learning from the past and considering the future of chemicals in the environment. Science 2020, 367, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.L.; Hodge, E. Urban contaminant dynamics: From source to effect. Environ. Sci. Technol. 2007, 41, 3796–3805. [Google Scholar] [CrossRef]
- Khan, S.; Anjum, R.; Raza, S.T.; Ahmed Bazai, N.; Ihtisham, M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 2022, 288, 132403. [Google Scholar] [CrossRef]
- Rojas-Valencia, M.N.; Nájera-Aguilar, H. Analysis of the generation of household solid wastes, household hazardous wastes and sustainable alternative handling. Int. J. Sustain. Soc. 2012, 4, 280–299. [Google Scholar] [CrossRef]
- Maruya, K.A.; Dodder, N.G.; Sengupta, A.; Smith, D.J.; Lyons, J.M.; Heil, A.T.; Drewes, J.E. Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA). Environ. Toxicol. Chem. 2016, 35, 1986–1994. [Google Scholar] [CrossRef]
- Sengupta, A.; Lyons, J.M.; Smith, D.J.; Drewes, J.E.; Snyder, S.A.; Heil, A.; Maruya, K.A. The occurrence and fate of chemicals od emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environ. Toxicol. Chem. 2014, 33, 350–358. [Google Scholar] [CrossRef]
- Drewes, J.E.; Dickenson, E.; Snyder, S. Contributions of Household Chemicals to Sewage and Their Relevance to Municipal Wastewater Systems and the Environment; IWA Publishing: London, UK, 2009; Volume 8. [Google Scholar] [CrossRef]
- Slack, R.J.; Bonin, M.; Gronow, J.R.; Van Santen, A.; Voulvoulis, N. Household hazardous waste data for the UK by direct sampling. Environ. Sci. Technol. 2007, 41, 2566–2571. [Google Scholar] [CrossRef]
- Backhaus, T.; Brack, W.; Van den Brink, P.J.; Deutschmann, B.; Hollert, H.; Posthuma, L.; Segner, H.; Seiler, T.B.; Teodorovic, I.; Focks, A. Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environ. Sci. Eur. 2019, 31, 98. [Google Scholar] [CrossRef]
- Collins, C.; Depledge, M.; Fraser, R.; Johnson, A.; Hutchison, G.; Matthiessen, P.; Murphy, R.; Owens, S.; Sumpter, J. Key actions for a sustainable chemicals policy. Environ. Int. 2020, 137, 105463. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, O. Environmental values, anthropocentrism and speciesism. Environ. Values 1997, 6, 127–142. [Google Scholar] [CrossRef]
- Ternes, T.A.; Joss, A.; Siegrist, H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38, 392A–399A. [Google Scholar] [CrossRef]
- Ågerstrand, M.; Arinaitwe, K.; Backhaus, T.; Barra, R.O.; Diamond, M.L.; Grimalt, J.O.; Groh, K.; Kandie, F.; Kurt-Karakus, P.B.; Letcher, R.J.; et al. Key Principles for the Intergovernmental Science–Policy Panel on Chemicals and Waste. Environ. Sci. Technol. 2023, 57, 2205–2208. [Google Scholar] [CrossRef]
- Tukker, A.; Jansen, B. Environment impacts of products—A detailed review of studies. J. Ind. Ecol. 2006, 10, 159–182. [Google Scholar] [CrossRef]
- Novak, P.J.; Arnold, W.A.; Blazer, V.S.; Halden, R.U.; Klaper, R.D.; Kolpin, D.W.; Kriebel, D.; Love, N.G.; Martinovic-Weigelt, D.; Patisaul, H.B.; et al. On the Need for a National (US) Research Program to Elucidate the Potential Risks to Human Health and the Environment Posed by Contaminants of Emerging Concern. Environ. Sci. Technol. 2011, 45, 3829–3830. [Google Scholar] [CrossRef]
- Missimer, M.; Robèrt, K.H.; Broman, G. A strategic approach to social sustainability—Part 2: A principle-based definition. J. Clean. Prod. 2017, 140, 42–52. [Google Scholar] [CrossRef]
- Mies, A.; Gold, S. Mapping the social dimension of the circular economy. J. Clean. Prod. 2021, 321, 128960. [Google Scholar] [CrossRef]
- Goven, J.; Langer, E.R.; Baker, V.; Ataria, J.; Leckie, A. A transdisciplinary approach to local waste management in New Zealand: Addressing interrelated challenges through indigenous partnership. Futures 2015, 73, 22–36. [Google Scholar] [CrossRef]
- Missimer, M.; Robert, K.H.; Broman, G.; Sverdrup, H. Exploring the possibility of a systematic and generic approach to social sustainability. J. Clean. Prod. 2010, 18, 1107–1112. [Google Scholar] [CrossRef]
- Robèrt, K.-H. The Natural Step Story: Seeding a Quiet Revolution; New Society Publishers: Gabriola Island, BC, Canada, 2002. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Judge, T. Mid-course correction: Towards a sustainable enterprise: The interface model. In Corporate Environmental Strategy; Anderson, R., Ed.; Peregrinzilla Press: Atlanta, GA, USA, 2000; Volume 1, pp. 114–115. [Google Scholar]
- Robèrt, K.-H. Tools and concepts for sustainable development, how do they relate to a general framework for sustainable development, and to each other? J. Clean. Prod. 2000, 8, 243–254. [Google Scholar] [CrossRef]
- Robèrt, K.-H.; Daly, H.; Hawken, P.; Holmberg, J. A compass for sustainable development. Int. J. Sustain. Dev. World Ecol. 1997, 4, 79–92. [Google Scholar] [CrossRef]
- Korhonen, J. Industrial ecology in the strategic sustainable development model: Strategic applications of industrial ecology. J. Clean. Prod. 2004, 12, 809–823. [Google Scholar] [CrossRef]
- Craig, J.L. Science and sustainable development in New Zealand. J. R. Soc. N. Z. 2004, 34, 9–22. [Google Scholar] [CrossRef]
- Cook, C.; Heath, F.; Thompson, R.L. A meta-analysis of response rates in Web- or internet-based surveys. Educ. Psychol. Meas. 2000, 60, 821–836. [Google Scholar] [CrossRef]
- Mutch, C.; Collins, S. Partners in learning: Schools’ engagement with parents, families, and communities in New Zealand. Sch. Community J. 2012, 22, 167–187. [Google Scholar]
- Robinson, V.M.; Hohepa, M.; Lloyd, C. School Leadership and Student Outcomes: Identifying What Works and Why; Australian Council for Educational Leaders Winmalee: Winmalee, Australia, 2007; Volume 41. [Google Scholar]
- Gilbert, J. School science is like wrestling with an octopus. N. Z. Sci. Teach. 2011, 126, 28–30. [Google Scholar]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef]
- Polasky, S.; Kling, C.L.; Levin, S.A.; Carpenter, S.R.; Daily, G.C.; Ehrlich, P.R.; Heal, G.M.; Lubchenco, J. Role of economics in analyzing the environment and sustainable development. Proc. Natl. Acad. Sci. USA 2019, 116, 5233–5238. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.T.; Langer, E.R.; Leckie, A.; Tremblay, L.A. Household preferences when purchasing handwashing liquid soap: A choice experiment application. J. Clean. Prod. 2019, 235, 1515–1524. [Google Scholar] [CrossRef]
- Lenton, T.M.; Xu, C.; Abrams, J.F.; Ghadiali, A.; Loriani, S.; Sakschewski, B.; Zimm, C.; Ebi, K.L.; Dunn, R.R.; Svenning, J.-C.; et al. Quantifying the human cost of global warming. Nat. Sustain. 2023, 6, 1237–1247. [Google Scholar] [CrossRef]
- Dubois, G.; Sovacool, B.; Aall, C.; Nilsson, M.; Barbier, C.; Henniann, A.; Bruyere, S.; Andersson, C.; Skold, B.; Nadaud, F.; et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 2019, 52, 144–158. [Google Scholar] [CrossRef]
- Okin, G.S. Environmental impacts of food consumption by dogs and cats. PLoS ONE 2017, 12, e0181301. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Burgess, J.; Bedford, T.; Hobson, K.; Davies, G.; Harrison, C. (Un) Sustainable Consumption; Edward Elgar Publishing: Cheltenham, UK, 2003; pp. 261–292. [Google Scholar]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Mohan, R.; Spiby, J.; Leonardi, G.S.; Robins, A.; Jefferis, S. Sustainable waste management in the UK: The public health role. Public Health 2006, 120, 908–914. [Google Scholar] [CrossRef]
- Ataria, J.M.; Murphy, M.; McGregor, D.; Chiblow, S.; Moggridge, B.J.; Hikuroa, D.C.H.; Tremblay, L.A.; Öberg, G.; Baker, V.; Brooks, B.W. Orienting the sustainable management of chemicals and waste toward indigenous knowledge. Environ. Sci. Technol. 2023, 57, 10901–10903. [Google Scholar] [CrossRef]
- Bǎlan, S.A.; Andrews, D.Q.; Blum, A.; Diamond, M.L.; Fernández, S.R.; Harriman, E.; Lindstrom, A.B.; Reade, A.; Richter, L.; Sutton, R.; et al. Optimizing chemicals management in the United States and Canada through the Essential-Use approach. Environ. Sci. Technol. 2023, 57, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; De Witt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Patton, S.; Scheringer, M.; et al. Finding essentiality feasible: Common questions and misinterpretations concerning the “essential-use” concept. Environ. Sci. Process. Impacts 2021, 23, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Gluge, J.; London, R.; Cousins, I.T.; DeWitt, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Patton, S.; et al. Information requirements under the Essential-Use concept: PFA case studies. Environ. Sci. Technol. 2022, 56, 6232–6242. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.; Hikuroa, D.; Macinnis-Ng, C. Connecting science to indigenous knowledge: Kaitiakitanga, conservation, and resource management. N. Z. J. Ecol. 2023, 47, 3521. [Google Scholar] [CrossRef]
Activity | Ranking | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Pot cleaning | 1 | 7 | 17 | 6 | 3 |
WS1: What could we do differently? | 0 | 1 | 30 | 3 | |
WS2: Why you buy? | 9 | 7 | 18 | ||
WS3: Have a go, make your own | 1 | 3 | 30 | ||
WS4: What future do we want? | 14 | 12 | 7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremblay, L.A.; Ataria, J.M.; Challenger, I.; Horswell, J.; Baker, V.; Langer, E.R.L.; Leckie, A.; Champeau, O.; Siggins, A.; Northcott, G.L. Up-the-Pipe Solutions: A Best Practice Framework to Engage Communities in Reducing Chemical Contamination in Waste. Pollutants 2023, 3, 494-506. https://doi.org/10.3390/pollutants3040034
Tremblay LA, Ataria JM, Challenger I, Horswell J, Baker V, Langer ERL, Leckie A, Champeau O, Siggins A, Northcott GL. Up-the-Pipe Solutions: A Best Practice Framework to Engage Communities in Reducing Chemical Contamination in Waste. Pollutants. 2023; 3(4):494-506. https://doi.org/10.3390/pollutants3040034
Chicago/Turabian StyleTremblay, Louis A., James M. Ataria, Ian Challenger, Jacqui Horswell, Virginia Baker, E. R. Lisa Langer, Alan Leckie, Olivier Champeau, Alma Siggins, and Grant L. Northcott. 2023. "Up-the-Pipe Solutions: A Best Practice Framework to Engage Communities in Reducing Chemical Contamination in Waste" Pollutants 3, no. 4: 494-506. https://doi.org/10.3390/pollutants3040034
APA StyleTremblay, L. A., Ataria, J. M., Challenger, I., Horswell, J., Baker, V., Langer, E. R. L., Leckie, A., Champeau, O., Siggins, A., & Northcott, G. L. (2023). Up-the-Pipe Solutions: A Best Practice Framework to Engage Communities in Reducing Chemical Contamination in Waste. Pollutants, 3(4), 494-506. https://doi.org/10.3390/pollutants3040034