Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Procedures
2.2. Laboratory Analysis
2.3. Climate Datasets and Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, T.; Royset, O.; Steinnes, E. Moss (Hylocomium splendens) used as biomonitor of atmospheric trace-element deposition—Estimation of uptake efficiencies. Atmos. Environ. 1995, 29, 353–360. [Google Scholar] [CrossRef]
- Markert, B.; Wappelhorst, O.; Weckert, V.; Herpin, U.; Siewers, U.; Friese, K.; Breulmann, G. The use of bioindicators for monitoring the heavy-metal status of the environment. J. Radioanal. Nucl. Chem. 1999, 240, 425–429. [Google Scholar] [CrossRef]
- Rühling, A. A European survey of atmospheric heavy metal deposition in 2000–2001. Environ. Pollut. 2002, 120, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Smodiš, B.; Pignata, M.L.; Saiki, M.; Cortés, E.; Bangfa, N.; Markert, B.; Nyarko, B.; Arunachalam, J.; Garty, J.; Vutchkov, M.; et al. Validation and Application of Plants as Biomonitors of Trace Element Atmospheric Pollution—A Co-Ordinated Effort in 14 Countries. J. Atmos. Chem. 2004, 49, 3–13. [Google Scholar] [CrossRef]
- Bassingthwaight, T.; Shaw, P.D. Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss. J. Limnol. 2010, 69, 22–32. [Google Scholar]
- Harmens, H.; Norris, D.A.; Cooper, D.M.; Mills, G.; Steinnes, E.; Kubin, E.; Thöni, L.; Aboal, J.; Alber, R.; Carballeira, A.; et al. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ. Pollut. 2011, 159, 2852–2860. [Google Scholar] [CrossRef]
- Špirič, Z.; Stafilov, T.; Vuckovic, I.; Glad, M. Study of nitrogen pollution in Croatia by moss biomonitoring and Kjeldahl method. J. Environ. Sci. Health 2014, 49, 1402–1408. [Google Scholar] [CrossRef]
- Wilkins, K.; Aherne, J. Isothecium Myosuroides and Thuidium Tamariscinum Mosses as Bioindicators of Nitrogen and Heavy Metal Deposition in Atlantic Oak Woodlands. Ann. Di Bot. 2015, 5, 71–78. [Google Scholar] [CrossRef]
- Olmstead, E.; Aherne, J. Are tissue concentrations of Hylocomium splendens a good predictor of nitrogen deposition? Atmos. Pollut. Res. 2019, 10, 80–87. [Google Scholar] [CrossRef]
- Berg, T.; Steinnes, E. Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci. Total Environ. 1997, 208, 197–206. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.M.; Dam, M.; De Temmerman, L.; et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ. Pollut. 2015, 200, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowden, P.; Aherne, J. Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos. Environ. 2019, 201, 84–91. [Google Scholar] [CrossRef]
- Kapusta, P.; Szarek-Łukaszewska, G.; Godzik, B. Present and Past Deposition of Heavy Metals in Poland as Determined by Moss Monitoring. Pol. J. Environ. Stud. 2014, 23, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, A.; Tejedo, P.; Dachs, J.; Benayas, J. Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). Sci. Total Environ. 2016, 569–570, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- DoŁęgowska, S.; Migaszewski, Z.M. PAH concentrations in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland). Ecotoxicol. Environ. Saf. 2011, 74, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Foan, L.; Simon, V.; Mills, G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environ. Pollut. 2013, 173, 245–254. [Google Scholar] [CrossRef]
- Holoubek, I.; Kořínek, P.; Šeda, Z.; Schneiderová, E.; Holoubková, I.; Pacl, A.; Tříska, J.; Cudlín, P.; Čáslavský, J. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ. Pollut. 2000, 109, 283–292. [Google Scholar] [CrossRef]
- Roblin, B.; Aherne, J. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Sci. Total Environ. 2020, 715, 136973. [Google Scholar] [CrossRef]
- Bertrim, C.; Aherne, J. Moss Bags as Biomonitors of Atmospheric Microplastic Deposition in Urban Environments. Biology 2023, 12, 149. [Google Scholar] [CrossRef]
- Aleksiayenak, Y.V.; Frontasyeva, M.V.; Florek, M.; Sykora, I.; Holy, K.; Masarik, J.; Brestakova, L.; Jeskovsky, M.; Steinnes, E.; Faanhof, A.; et al. Distributions of 137Cs and 210Pb in moss collected from Belarus and Slovakia. J. Environ. Radioact. 2013, 117, 19–24. [Google Scholar] [CrossRef]
- Boryło, A.; Romańczyk, G.; Skwarzec, B. Lichens and mosses as polonium and uranium biomonitors on Sobieszewo Island. J. Radioanal. Nucl. Chem. 2017, 311, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinnes, E.; Njfistad, O. Use of Mosses and Lichens for Regional Mapping of 137Cs Fallout from the Chernobyl Accident. J. Environ. Radioact. 1993, 21, 65–73. [Google Scholar] [CrossRef]
- Paliouris, G.; Taylor, H.W.; Wein, R.W.; Svoboda, J.; Mierzynski, B. Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest. Sci. Total Environ. 1995, 160–161, 153–166. [Google Scholar] [CrossRef]
- Mitrović, B.; Ajtić, J.; Lazić, M.; Andrić, V.; Krstić, N.; Vranješ, B.; Vićentijević, M. Natural and anthropogenic radioactivity in the environment of Kopaonik mountain, Serbia. Environ. Pollut. 2016, 215, 273–279. [Google Scholar] [CrossRef]
- Belivermiş, M.; Kılıç, Ö.; Çayir, A.; Coşkun, M.; Coşkun, M. Assessment of 210Po and 210Pb in lichen, moss and soil around Çan coal-fired power plant, Turkey. J. Radioanal. Nucl. Chem. 2016, 307, 523–531. [Google Scholar] [CrossRef]
- Steinnes, E. Passive moss biomonitoring: Atmospheric deposition of radionuclides—Methodological aspects and practical limitations. In Biomonitoring of Air Pollution Using Mosses and Lichens: A Passive and Active Approach—State of the Art Research and Perspectives; Uroševic, M.A., Vukovic, G., Tomaševic, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2016; p. 246. [Google Scholar]
- Baskaran, M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A Review. J. Environ. Radioact. 2011, 102, 500–513. [Google Scholar] [CrossRef]
- Sykora, I.; Froehlich, K. Radionuclides as Tracers of Atmospheric Processes. Radioact. Environ. 2009, 16, 51–88. [Google Scholar] [CrossRef]
- Du, P.; Walling, D.E. Using 137Cs measurements to investigate the influence of erosion and soil redistribution on soil properties. Appl. Radiat. Isot. 2011, 69, 717–726. [Google Scholar] [CrossRef]
- Tiessen, K.H.D.; Li, S.; Lobb, D.A.; Mehuys, G.R.; Rees, H.W.; Chow, T.L. Using repeated measurements of 137Cs and modelling to identify spatial patterns of tillage and water erosion within potato production in Atlantic Canada. Geoderma 2009, 153, 104–118. [Google Scholar] [CrossRef]
- Alonso-Hernandez, C.M.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Delfanti, R.; Papucci, C.; Ferretti, O.; Crovato, C. Recent changes in sedimentation regime in Cienfuegos Bay, Cuba, as inferred from 210Pb and 137Cs vertical profiles. Cont. Shelf Res. 2006, 26, 153–167. [Google Scholar] [CrossRef]
- Ehlken, S.; Kirchner, G. Seasonal variations in soil-to-grass transfer of fallout strontium and cesium and of potassium in North German soils. J. Environ. Radioact. 1996, 33, 147–181. [Google Scholar] [CrossRef]
- Koarashi, J.; Atarashi-Andoh, M.; Amano, H.; Matsunaga, T. Vertical distributions of global fallout 137Cs and 14C in a Japanese forest soil profile and their implications for the fate and migration processes of Fukushima-derived 137Cs. J. Radioanal. Nucl. Chem. 2017, 311, 473–481. [Google Scholar] [CrossRef]
- Zhiyanski, M.; Sokolovska, M.; Bech, J.; Clouvas, A.; Penev, I.; Badulin, V. Cesium-137 contamination of oak (Quercus petrae Liebl.) from sub-mediterranean zone in South Bulgaria. J. Environ. Radioact. 2010, 101, 864–868. [Google Scholar] [CrossRef]
- Lal, D.; Malhotra, P.K.; Peters, B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmos. Terr. Phys. 1958, 12, 306–328. [Google Scholar] [CrossRef]
- Krmar, M.; Radnović, D.; Hansman, J.; Mesaroš, M.; Betsou, C.; Jakšić, T.; Vasić, P. Spatial distribution of 7Be and 137Cs measured with the use of biomonitors. J. Radioanal. Nucl. Chem. 2018, 318, 1845–1854. [Google Scholar] [CrossRef]
- Pham, M.K.; Povinec, P.P.; Nies, H.; Betti, M. Dry and wet deposition of 7Be, 210Pb and 137Cs in Monaco air during 1998–2010: Seasonal variations of deposition fluxes. J. Environ. Radioact. 2013, 120, 45–57. [Google Scholar] [CrossRef]
- Yang, H.; Appleby, P.G. Use of lead-210 as a novel tracer for lead (Pb) sources in plants. Sci. Rep. 2016, 6, 21707. [Google Scholar] [CrossRef]
- Sumerling, T.J. The use of mosses as indicators of airborne radionuclides near a major nuclear installation. Sci. Total Environ. 1984, 35, 251–265. [Google Scholar] [CrossRef]
- Ehdwall, H.; Holmberg, B.-T.; Farzar, K. Radiological and legal aspects of energy production by burning peat. Sci. Total Environ. 1985, 45, 69–75. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Gibb, C.L.; Hawkins, J.L. Fate of Contaminants during Utilization of Peat Materials. J. Environ. Qual. 1989, 18, 503–506. [Google Scholar] [CrossRef]
- Amiro, B.D.; Sheppard, S.C.; Johnston, F.L.; Evenden, W.G.; Harris, D.R. Burning radionuclide question: What happens to iodine, cesium and chlorine in biomass fires? Sci. Total Environ. 1996, 187, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency, Ireland. Radioactivity Monitoring of the Irish Environment 2012–2013. Wexford, Ireland. 2015. Available online: https://www.epa.ie/publications/compliance--enforcement/radiation/Radioactivity_MonReport_2012_2013.pdf (accessed on 1 February 2023).
- McAulay, I.R.; Moran, D. Radiocaesium fallout in Ireland from the Chernobyl accident. J. Radiol. Prot. 1989, 9, 29–32. [Google Scholar] [CrossRef]
- Persson, C.; Rodhe, H.; De Greer, L. The Chernobyl Accident: A meteorological analysis of how radionuclides reached and were deposited in Sweden. Ambio 1987, 16, 20–30. [Google Scholar]
- McAulay, I.R.; Moran, D. Relationships between deposition of Chernobyl originating caesium and ruthenium radio-nuclides and rainfall in Ireland. Analylst 1992, 117, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Arpagaus, P.; Monna, F.; Dominik, J. Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. J. Environ. Radioact. 2001, 53, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Aherne, J.; Wilkins, K.; Cathcart, H. Critical Loads and Soil-Vegetation Modelling; CCRP Report No. 323; Environmental Protection Agency: Wexford, Ireland, 2020.
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O.; Participants of the Moss Survey. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen and POPs in Europe and Beyond; Report of the ICP Vegetation; Moss Survey Coordination Centre, Joint Institute for Nuclear Research: Dubna, Russia, 2020; ISBN 978-5-9530-0508-1. [Google Scholar]
- Alonso-Hernández, C.M.; Morera-Gómez, Y.; Cartas-Águila, H.; Guillén-Arruebarrena, A. Atmospheric deposition patterns of 210Pb and 7Be in Cienfuegos, Cuba. J. Environ. Radioact. 2014, 138, 149–155. [Google Scholar] [CrossRef]
- Dueñas, C.; Fernández, M.C.; Gordo, E.; Cañete, S.; Pérez, M. Gross alpha, gross beta activities and gamma emitting radionuclides composition of rainwater samples and deposition to ground. Atmos. Environ. 2011, 45, 1015–1024. [Google Scholar] [CrossRef]
- Mietelski, J.W.; Nalichowska, E.; Tomankiewicz, E.; Brudecki, K.; Janowski, P.; Kierepko, R. Gamma emitters in atmospheric precipitation in Krakow (Southern Poland) during the years 2005–2015. J. Environ. Radioact. 2017, 166, 10–16. [Google Scholar] [CrossRef]
- Synnott, H.J.; McGee, E.J.; Rafferty, B.; Dawson, D.E. Long-Term Trends of Radiocesium Activity Concentrations in Vegetation in Irish Semi-Natural Ecosystems. Health Phys. 2000, 79, 154–161. [Google Scholar] [CrossRef]
- Met Éireann. Thirty-Year Climate Averages. 2012. Available online: https://www.met.ie/climate/30-year-averages (accessed on 7 February 2019).
- ICP Vegetation. Heavy Metals in European Mosses: 2010 Survey; Harmens, H., Ed.; Monitoring Manual; ICP Vegetation Programme Coordination Centre: Wales, UK, 2010; p. 27. [Google Scholar]
- Cutshall, N.H.; Larsen, I.L.; Olsen, C.R. Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nucl. Instrum. Methods Phys. Res. 1983, 206, 309–312. [Google Scholar] [CrossRef]
- Walsh, S. A Summary of Climate Averages for Ireland 1981–2010; Climatological Note 14; MET Éireann, Glasnevin Hill: Dublin, Ireland, 2012. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Lee, L. NADA: Nondetects and Data Analysis for Environmental Data. R Package Version 1.6-1. 2017. Available online: https://CRAN.R-project.org/package=NADA (accessed on 1 February 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 1 February 2023).
- Fernández, J.A.; Boquete, M.T.; Carballeira, A.; Aboal, J.R. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci. Total Environ. 2015, 517, 132–150. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, S.; Efrizal; Osaki, S.; Momoshima, N.; Maeda, Y. Seasonal variation of natural radionuclides and some elements in plant leaves. J. Radioanal. Nucl. Chem. 2008, 278, 419–422. [Google Scholar] [CrossRef]
- Gerdol, R.; Degetto, S.; Mazzotta, D.; Vecchiati, G. The vertical distribution of the Cs-137 derived from Chernobyl fall-out in the uppermost Sphagnum layer of two peatlands in the southern Alps (Italy). Water Air Soil Pollut. 1994, 75, 93–106. [Google Scholar] [CrossRef]
- Krmar, M.; Radnović, D.; Rakic, S.; Matavuly, M. Possible use of terrestrial mosses in detection of atmospheric deposition of 7Be over large areas. J. Environ. Radioact. 2007, 95, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Krmar, M.; Wattanavatee, K.; Radnović, D.; Slivka, J.; Bhongsuwan, T.; Frontasyeva, M.V.; Pavlov, S.S. Airborne radionuclides in mosses collected at different latitudes. J. Environ. Radioact. 2013, 117, 45–48. [Google Scholar] [CrossRef]
- Krmar, M.; Radnović, D.; Mihailović, D.; Lalić, B.; Slivka, J.; Bikit, I. Temporal variations of 7Be, 210Pb and 137Cs in moss samples over 14 month period. Appl. Radiat. Isot. 2009, 67, 1139–1147. [Google Scholar] [CrossRef]
- Cuculovic, A.; Popovic, D.; Cuculovic, R.; Ajtic, J. Natural radionuclides and 137Cs in moss and lichen in eastern Serbia. Nucl. Technol. Radiat. Prot. 2012, 27, 44–51. [Google Scholar] [CrossRef]
- McAulay, I.R.; Moran, D. Natural radioactivity in the soil in the republic of Ireland. Radiat. Prot. Dosim. 1988, 24, 47–49. [Google Scholar] [CrossRef]
- Yang, H.; Shilland, E.; Appleby, P.G.; Rose, N.L.; Battarbee, R.W. Legacy Lead Stored in Catchments Is the Dominant Source for Lakes in the U.K.: Evidence from Atmospherically Derived 210Pb. Environ. Sci. Technol. 2018, 52, 14070–14077. [Google Scholar] [CrossRef]
- Sert, E.; Uğur, A.; Özden, B.; Saç, M.M.; Camgöz, B. Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. J. Environ. Radioact. 2011, 102, 535–542. [Google Scholar] [CrossRef]
- Uğur, A.; Özden, B.; Saç, M.M.; Yener, G. Biomonitoring of 210Po and 210Pb using lichens and mosses around a uraniferous coal-fired power plant in western Turkey. Atmos. Environ. 2003, 37, 2237–2245. [Google Scholar] [CrossRef]
- Kim, G.; Hussain, N.; Scudlark, J.R.; Church, T.M. Factors influencing atmospheric depositional fluxes of stable Pb, 210Pb, and 7Be into Chesapeake Bay. J. Atmos. Chem. 2000, 36, 65–79. [Google Scholar] [CrossRef]
- Winkler, R.; Rosner, G. Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany. Sci. Total Environ. 2000, 263, 57–68. [Google Scholar] [CrossRef]
- Likuku, A.S. Factors influencing ambient concentrations of 210Pb and 7Be over the city of Edinburgh (55.9° N, 03.2° W). J. Environ. Radioact. 2006, 87, 289–304. [Google Scholar] [CrossRef]
- Griselli, B.; Magnoni, M.; Bertino, S.; Bari, A.; Isocrono, D.; Piervittori, R. Biomonitoring in the evaluation of human impact: Use of lichen biodiversity, and moss accumulation of radioisotopes in an Alpine valley (Valle Orco, Piedmont, Italy). Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2003, 137, 35–46. [Google Scholar] [CrossRef]
- Al-Masri, M.S.; Mamish, S.; Al-Haleem, M.A.; Al-Shamali, K. Lycopodium cernuum and Funaria hygrometrica as deposition indicators for radionuclides and trace metals. J. Radioanal. Nucl. Chem. 2005, 266, 49–55. [Google Scholar] [CrossRef]
- McGinnity, P.; Currivan, L.; Duffy, J.; Hanley, O.; Kelleher, K.; McKittrick, L.; Colmain, M.O.; Organo, C.; Smith, K.; Somerville, S.; et al. Assessment of the Impact on Ireland of the 2011 Fukushima Nuclear Accident; RPII 12/01; Radiological Protection Institute of Ireland: Dublin, Ireland, 2012; p. 44. [Google Scholar]
- Bossew, P.; Kirchner, G.; De Cort, M.; de Vries, G.; Nishev, A.; de Felice, L. Radioactivity from Fukushima Dai-ichi in air over Europe; part 1: Spatio-temporal analysis. J. Environ. Radioact. 2012, 114, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A.P. Global Transport and Deposition of 137Cs Following the Fukushima Nuclear Power Plant Accident in Japan: Emphasis on Europe and Asia Using High–Resolution Model Versions and Radiological Impact Assessment of the Human Population and the Environment Using Interactive Tools. Environ. Sci. Technol. 2013, 47, 5803–5812. [Google Scholar] [CrossRef] [PubMed]
- Krmar, M.; Mihailović, D.T.; Arsenić, I.; Radnović, D.; Pap, I. Beryllium-7 and 210Pb atmospheric deposition measured in moss and dependence on cumulative precipitation. Sci. Total Environ. 2016, 541, 941–948. [Google Scholar] [CrossRef] [PubMed]
Statistic | 210Pb Activity | 137Cs Activity | 7Be Activity | 40K Activity |
---|---|---|---|---|
Non-detect (%) | 0 | 33 | 67 | 25 |
Number > DL | 24 | 16 | 8 | 18 |
Mean | 541.5 | 14.0 | 420.7 | 96.5 |
Median | 490.0 | 10.4 | 376.2 | 90.5 |
Range | 225.5–968.0 | 3.1–41.4 | 283.1–604.4 | 57.2–155.4 |
NMAD (%) | 35 | 31 | 22 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkins, K.; Cathcart, H.; Hickey, P.; Hanley, O.; León Vintró, L.; Aherne, J. Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss. Pollutants 2023, 3, 102-113. https://doi.org/10.3390/pollutants3010009
Wilkins K, Cathcart H, Hickey P, Hanley O, León Vintró L, Aherne J. Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss. Pollutants. 2023; 3(1):102-113. https://doi.org/10.3390/pollutants3010009
Chicago/Turabian StyleWilkins, Kayla, Hazel Cathcart, Padraig Hickey, Olwyn Hanley, Luis León Vintró, and Julian Aherne. 2023. "Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss" Pollutants 3, no. 1: 102-113. https://doi.org/10.3390/pollutants3010009
APA StyleWilkins, K., Cathcart, H., Hickey, P., Hanley, O., León Vintró, L., & Aherne, J. (2023). Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss. Pollutants, 3(1), 102-113. https://doi.org/10.3390/pollutants3010009