Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Statistically significant increase in Pb and Sb concentrations between 2015 and 2020;
- Statistically significant reduction in concentrations of all metals between 1990 and 2020;
- Statistically significant increase in concentrations of all metals between 2015 and 2020.
- The decreases between 1990 and 2020 are in line with the emissions register.
- The increase between 2015 and 2020 is not in line with the emissions register.
- Element content in moss for an outdoor area in the immediate vicinity of a moss collection site under tree canopies;
- Element content in moss for a site under tree canopies in the immediate vicinity of a moss collection site outside of tree canopies;
- Element content in moss using an estimated or measured leaf area index for any site, enabling nationwide maps of element distribution across Germany.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fränzle, O. Contaminants in Terrestrial Environments; Springer: Berlin, Germany; London, UK, 1993. [Google Scholar]
- Fränzle, O.; Straškraba, M.; Jørgensen, S.E. Ecotoxicology. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Berg, T.; Hjellbrekke, A.; Rühling, Å.; Steinnes, E.; Kubin, E.; Larsen, M.M.; Piispanen, J. Absolute Deposition Maps of Heavy Metals for the Nordic Countries Based on the Moss Survey; TemaNord 505; Nordic Council of Ministers: Copenhagen, Denmark, 2003. [Google Scholar]
- Berg, T.; Steinnes, E. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: From relative to absolute values. Environ. Pollut. 1997, 98, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Holy, M.; Pesch, R.; Zechmeister, G.H.; Harmens, H.; Ilyin, I. Mapping atmospheric depositions of cadmium and lead in Germany based on EMEP deposition data and the European Moss Survey 2005. Environ. Sci. Eur. 2011, 23, 19. [Google Scholar] [CrossRef]
- Tørseth, K.; Aas, W.; Breivik, K.; Fjaeraa, A.M.; Fiebig, M.; Hjellbrekke, A.G.; Myhre, C.L.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 2012, 12, 5447–5481. [Google Scholar] [CrossRef]
- Harmens, H.; Mills, G.; Hayes, F.; Norris, D.; Sharps, K. Twenty eight years of ICP Vegetation: An overview of its activities. Ann. Di Bot. 2015, 5, 31–43. [Google Scholar]
- ICP Vegetation (International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops). Monitoring of Atmospheric Deposition of Heavy Metals, Nitrogen and POPs in Europe Using Bryophytes. Monitoring Manual 2020 Survey. United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution; ICP Vegetation: Bangor, UK, 2020; pp. 1–27. [Google Scholar]
- Schröder, W.; Nickel, S. Site-specific investigation and spatial modelling of canopy drip effect on element concentrations in moss. Environ. Sci. Pollut. Res. 2018, 25, 27173–27186. [Google Scholar] [CrossRef] [PubMed]
- Nickel, S.; Schröder, W. Correlating elements content in mosses collected in 2015 across Germany with spatially associated characteristics of sampling sites and their surroundings. Environ. Sci. Eur. 2019, 31, 80. [Google Scholar] [CrossRef]
- Schröder, W.; Holy, M.; Pesch, R.; Harmens, H.; Fagerli, H. Mapping background values of atmospheric nitrogen total depositions in Germany based on EMEP deposition modelling and the European Moss Survey 2005. Environ. Sci. Eur. 2011, 23, 18. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W.; Ilyin, I.; Travnikov, O. Correlation of Modelled Atmospheric Deposition of Cadmium, Mercury and Lead with Their Measured Accumulation in Mosses; Springer Briefs in Environmental Science; Springer: Berlin, Germany, in press.
- Nickel, S.; Schröder, W.; Völksen, B.; Dreyer, A. Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses. Forests 2022, 13, 605. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Boquete, M.T.; Carballeira, A.; Aboal, J.R. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci. Total Environ. 2015, 517, 132–150. [Google Scholar] [CrossRef]
- Skudnik, M.; Jeran, Z.; Batič, F.; Simončič, P.; Kastelec, D. Potential environmental factors that influence the nitrogen concentration and δ15N values in the moss Hypnum cupressiforme collected inside and outside canopy drip lines. Environ. Pollut. 2015, 198, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Herpin, U.; Lieth, H.; Markert, B. Monitoring der Schwermetallbelastung in der Bundesrepublik Deutschland Mit Hilfe von Moosanalysen; UBA-Texte 31/1995; Umweltbundesamt: Berlin, Germany, 1995. (In German) [Google Scholar]
- Siewers, U.; Herpin, U. Schwermetalleinträge in Deutschland. Moos-Monitoring 1995 Teil 1; Sonderhefte, Heft SD 2; Geologisches Jahrbuch: Stuttgart, Germany, 1998. (In German) [Google Scholar]
- Schröder, W.; Anhelm, P.; Bau, H.; Bröcker, F.; Matter, Y.; Mitze, R.; Mohr, K.; Peichl, L.; Peiter, A.; Peronne, T.; et al. Untersuchung von Schadstoffeinträgen anhand von Bioindikatoren. Aus- und Bewertung der Ergebnisse aus dem Moosmonitoring 1990, 1995 und 2000; Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit; FuE-Vorhaben 200 64 218; Abschlussbericht Band 1 bis 3 + Synthesebericht; Umweltbundesamt: Berlin, Germany, 2000. (In German) [Google Scholar]
- Pesch, R.; Schröder, W.; Genssler, L.; Goeritz, A.; Holy, M.; Kleppin, L.; Matter, Y. Moos-Monitoring 2005/2006: Schwermetalle IV und Gesamtstickstoff; Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit; Forschungskennzahl 20564200; Abschlussbericht; Umweltbundesamt: Dessau-Roßlau, Germany, 2007. (In German) [Google Scholar]
- Schröder, W.; Nickel, S.; Völksen, B.; Dreyer, A.; Wosniok, W. Nutzung von Bioindikationsmethoden zur Bestimmung und Regionalisierung von Schadstoffeinträgen für eine Abschätzung des Atmosphärischen Beitrags zu Aktuellen Belastungen von Ökosystemen; UBA-Texte 91/2019; Umweltbundesamt: Dessau-Roßlau, Germany, 2019; Volume 2:1–296, pp. 1–189. (In German) [Google Scholar]
- Meyer, M.; Schröder, W.; Nickel, S.; Leblond, S.; Lindroos, A.J.; Mohr, K.; Poikolainen, J.; Santamaria, J.M.; Skudnik, M.; Thöni, L.; et al. Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Sci. Total Environ. 2015, 538, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.; Pesch, R.; Schröder, W.; Hoffmann, A. Accounting for canopy drip effects of spatiotemporal trends of the concentrations of N in mosses, atmospheric N depositions and critical load exceedances: A case study from North-Western Germany. Environ. Sci. Eur. 2013, 25, 26. [Google Scholar] [CrossRef]
- Wosniok, W.; Nickel, S.; Schröder, W. Development of the software tool Sample Size for Arbitrary Distributions and exemplary application to calculate the minimum number of moss samples used as accumulation indicators for atmospheric deposition. Environ. Sci. Eur. 2020, 32, 9. [Google Scholar] [CrossRef]
- Wosniok, W.; Nickel, S.; Schröder, W. R Software Tool for Calculating Minimum Sample Sizes for Arbitrary Distributions (SSAD), Link to Scientific Software (Version v1); ZENODO, 2019. [Google Scholar] [CrossRef]
- Meyer, M.; Schröder, W.; Pesch, R.; Steinnes, E.; Uggerud, H.T. Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J. Soils Sediments 2015, 15, 410–422. [Google Scholar] [CrossRef]
- Holy, M.; Schröder, W.; Pesch, R.; Harmens, H.; Ilyin, I.; Steinnes, E.; Alber, R.; Aleksiayenak, Y.; Blum, O.; CosKun, M.; et al. First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000, and 2005. J. Atmos. Chem. 2010, 63, 109–124. [Google Scholar] [CrossRef]
- Meyer, M. Standortspezifisch differenzierte Erfassung atmosphärischer Stickstoff- und Schwermetalleinträge mittels Moosen unter Berücksichtigung des Traufeffektes und ergänzende Untersuchungen zur Beziehung von Stickstoffeinträgen und Begleitvegetation. Ph.D. Thesis, Universität Vechta, Vechta, Germany, 2016. (In German). [Google Scholar]
- Sachs, L.; Hedderich, J. Applied Statistics. Methodensammlung Mit R; Springer: Berlin, Germany, 2019; pp. 1–813. [Google Scholar]
- NaNE. National Trend Tables for German Reporting of Atmospheric Emissions (Nitrogen) 1990–2020, as of August 2022; Federal Environment Agency: Dessau Roßlau, Germany, 2022. [Google Scholar]
- Nickel, S.; Schröder, W.; Schmalfuss, R.; Saathoff, M.; Harmens, H.; Mills, G.; Frontasyeva, M.V.; Barandovski, L.; Blum, O.; Carballeira, A.; et al. Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe. Environ. Sci. Eur. 2018, 30, 53. [Google Scholar] [CrossRef] [PubMed]
- Schaap, M.; Hendriks, C.; Jonkers, S.; Builtjes, P. Impacts of Heavy Metal Emission on Air Quality and Ecosystems across Germany—Sources, Transport, Deposition and Potential Hazards. Part 1: Assessment of the Atmospheric Heavy Metal Deposition to Terrestrial Ecosystems in Germany; UBA-TEXTE 106/2018; Umweltbundesamt: Dessau-Roßlau, Germany, 2018; pp. 1–81. [Google Scholar]
- Nickel, S.; Schröder, W.; Schaap, M. Estimating atmospheric deposition of heavy metals in Germany using LOTOS-EUROS model calculations and data from biomonitoring programmes. Pollut. Atmosphérique 2015, 226, 1–20. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metal. Environ. Sci. Pollut. Res. 2017, 24, 11919–11939. [Google Scholar] [CrossRef] [PubMed]
Site Name | Longitude | Latitude | Moss Species | Surrounding Vegetation |
---|---|---|---|---|
BB119_1 | 13.06463 | 53.13782 | Plesch | Clearing within mixed forest |
BW980_1 | 7.911113 | 47.913212 | Hypcup | Clearing within mixed forest |
BY206 | 13.41914 | 48.96492 | Hypcup | Clearing within mixed forest |
BY227_1 | 12.9236 | 47.595316 | Plesch | Clearing within mixed forest |
BY228_1 | 11.438111 | 48.482 | Plesch | Clearing within coniferous forest |
HE64 | 9.33924 | 50.92591 | Hypcup | Clearing within broad leaved forest |
MV114_2 | 12.72328 | 54.4364 | Psepur | Clearing within mixed forest |
NI03_95 | 9.22912 | 53.22084 | Plesch | Forests—coniferous (Grasslands) |
NI104_88 | 8.56453 | 53.22864 | Psepur | Heathland(Forests—coniferous. Clearing within broad leaved) |
NI108_9 | 7.91666 | 52.941612 | Psepur | Grasslands (Forests—coniferous. Forests—broad leaved) |
NI116_123 | 8.4461 | 52.87257 | Plesch | Forests—broad leaved (Forests—coniferous. Heathland) |
NI117_124 | 8.84464 | 52.82716 | Psepur | Forests—coniferous (Forests - broad leaved. Grasslands) |
NI118_128 | 9.21101 | 52.81197 | Psepur | Forests—broad leaved (Forests—coniferous. Grasslands) |
NI124_139 | 8.998761 | 52.642282 | Plesch | Heathland (Forests—broad leaved) |
NI130_157 | 9.21033 | 52.50861 | Plesch | Grasslands (Forests—coniferous. Forests—mixed) |
NI86_1 | 10.759259 | 52.805983 | Plesch | Clearing within coniferous forest |
NW27 | 7.44047 | 51.02383 | Hypcup | Clearing within mixed forest |
NW39 | 7.84453 | 52.17595 | Hypcup | Clearing within broad leaved forest |
RP27 | 8.18045 | 49.95429 | Psepur | Clearing within broad leaved forest |
SH36_2 | 10.24728 | 54.10648 | Psepur | Clearing within mixed forest |
SL5 | 6.78962 | 49.22595 | Psepur | Clearing within mixed forest |
SL9_2 | 6.843643 | 49.281593 | Hypcup | Clearing within broad leaved forest |
SN240_1 | 12.326555 | 51.357992 | Hypcup | Clearing within broad leaved forest |
ST199_1 | 12.59049 | 51.67068 | Psepur | Clearing within mixed forest |
ST204_1 | 10.639492 | 51.821196 | Plesch | Clearing within coniferous forest |
TH68 | 10.78596 | 50.63235 | Hypcup | Clearing within coniferous forest |
Descriptors | Number of Variables |
---|---|
Atmospheric deposition | 9 |
Meteorology | 5 |
Geology, soil and relief | 7 |
Moss type and density and vegetation | 4 |
Vegetation structure | 14 |
Potential emission sources | 51 |
Distance to North Sea and Baltic Sea | 1 |
Potential risk of wind erosion on arable land | 3 |
94 |
As | Cd | Cu | Ni | Pb | Sb | N | |
---|---|---|---|---|---|---|---|
MPZ | 110 | 117 | 55 | 73 | 75 | 36 | 10 |
n | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
Element | Unit | 1990 (n = 475 to 592) | 1995 (n = 1026 to 1028) | 2000 (n = 1026 to 1028) | 2005 (n = 724 to 726) | 2015 (n = 397 to 400) | 2020 (n = 26) |
---|---|---|---|---|---|---|---|
As | µg/g | 0.338 | 0.249 | 0.160 | 0.160 | 0.108 (0.101–0.114) | 0.119 (0.082–0.135) |
Cd | µg/g | 0.287 | 0.293 | 0.210 | 0.210 | 0.136 (0.130–0.148) | 0.210 (0.158–0.244) |
Cu | µg/g | 8.79 | 9.45 | 7.14 | 7.27 | 4.65 (4.44–4.84) | 5.87 (5.08–6.11) |
Ni | µg/g | 2.353 | 1.630 | 1.130 | 1.160 | 0.681 (0.653–0.722) | 1.800 (1.291–2.095) |
Pb | µg/g | 12.94 | 7.78 | 4.62 | 3.69 | 1.83 (1.69–1.97) | 1.88 (1.29–3.02) |
Sb | µg/g | n.a. | 0.173 | 0.150 | 0.160 | 0.090 (0.085–0.097) | 0.148 (0.130–0.165) |
Element | 1995/1990 | 2000/1995 | 2005/2000 | 2015/2005 | 2020/2015 | 1995/B. Year | 2000/B. Year | 2005/B. Year | 2015/B. Year | 2020/B. Year |
---|---|---|---|---|---|---|---|---|---|---|
As | −26 *** | −36 *** | 0 | −32 *** | +10 | −26 ** | −53 *** | −53 *** | −68 *** | −65 *** |
Cd | +2 | −28 *** | 0 | −35 *** | +55 *** | 2 | −27 *** | −27 *** | −53 *** | −27 *** |
Cu | +8 *** | −24 *** | +2 ** | −36 *** | +26 *** | 8 ** | −19 *** | −17 *** | −47 *** | −33 *** |
Ni | −31 *** | −31 *** | +3 | −41 *** | +165 *** | −31 ** | −52 *** | −51 *** | −71 *** | −23 *** |
Pb | −40 *** | −41 *** | −20 *** | −50 *** | +2 | −40 ** | −64 *** | −71 *** | −86 *** | −86 *** |
Sb | n.a. | −13 *** | 7 ** | −44 *** | +64 *** | n.a. | −13 *** | −8 *** | −48 *** | −14 ** |
As | Cd | Cu | Ni | Pb | Sb | |
---|---|---|---|---|---|---|
Change in median HM content in moss in 2020 compared to 2015 in % (in brackets: emission trend, Germany, 2015–2020) | +10 (−19) | +55 (−13) | +26 (−9) | +165 (−3) | +2 (−14) | +64 n.a. |
Change in median HM content in the moss in 2015 compared to 1990 in % (in brackets: emission trend, Germany 1990–2020) | −65 (−94) | −27 (−63) | −33 (−15) | −23 (−61) | −86 (−92) | −14 n.a. |
Element | Data Collective 1 (n = 20) | Data Collective 2 (n = 17 to 20) | Data Collective 3 (n = 52) | Data Collective 4 (n = 25) |
---|---|---|---|---|
Al | 1.26 | 1.43 ** | --- | 1.41 |
As | 1.44 | 1.50 | --- | 1.57 |
Cd | 1.35 * | 1.69 *** | 1.60 *** | 1.75 *** |
Cr | 1.42 | 1.40 * | 1.01 | 1.22 |
Cu | 1.44 *** | 1.46 *** | 1.71 *** | 1.80 *** |
Fe | 1.31 | 1.31 | --- | 1.32 *** |
Hg | 1.50 *** | 1.33 *** | 1.68 *** | 2.50 *** |
Ni | 1.46 | 1.63 *** | 1.15 *** | 1.24 *** |
Pb | 1.26 | 1.38 (*) | 1.32 *** | 1.72 *** |
Sb | 1.18 * | 1.18 *** | --- | 1.62 *** |
V | 1.21 | 1.26 | --- | 1.60 *** |
Zn | 1.21 *** | 1.20 *** | 1.33 *** | 1.43 *** |
N | 1.46 *** | 1.46 *** | 1.95 *** | 1.68 *** |
Element | Data Collective 2 rp (n = 28 to 40) (1) | Data Collective 2 rs (n = 28 to 40) (1) | Data Collective 4 rp (n = 67) (2) | Data Collective 4 rs (n = 67) (2) |
---|---|---|---|---|
Al | 0.84 *** | 0.76 *** | 0.43 *** | 0.41 *** |
As | 0.32 * | 0.24 | 0.44 *** | 0.50 *** |
Cd | 0.48 *** | 0.67 *** | 0.64 *** | 0.57 *** |
Cr | 0.57 *** | 0.60 *** | 0.48 *** | 0.47 *** |
Cu | 0.90 *** | 0.92 *** | 0.73 *** | 0.75 *** |
Fe | 0.52 *** | 0.50 *** | 0.51 *** | 0.52 *** |
Hg | 0.66 *** | 0.78 *** | 0.71 *** | 0.72 *** |
Ni | 0.75 *** | 0.71 *** | 0.64 *** | 0.60 *** |
Pb | 0.61 *** | 0.52 *** | 0.72 *** | 0.65 *** |
Sb | 0.80 *** | 0.84 *** | 0.77 *** | 0.68 *** |
V | 0.41 ** | 0.36 ** | 0.57 *** | 0.59 *** |
Zn | 0.46 *** | 0.59 *** | 0.59 *** | 0.60 *** |
N | 0.87 *** | 0.87 *** | 0.84 *** | 0.81 *** |
Element | n | Vegetation Structure Measure | a | b | RSE | R2 | Adj. R2 | Pseudo R2 |
---|---|---|---|---|---|---|---|---|
Al | 32 | sLAI.spec *** | 1.2432 | −0.1776 | 0.39 | 0.71 | 0.70 | 0.69 |
As_ | 30 | sLAI.spec * | 0.9851 | 0.4071 | 1.42 | 0.10 | 0.07 | 0.10 |
Cd | 36 | sLAI.spec *** | 0.6895 | 0.4138 | 0.62 | 0.23 | 0.21 | 0.31 |
Cr | 28 | sLAI.spec *** | 0.6111 | 0.4423 | 0.43 | 0.32 | 0.29 | 0.47 |
Cu | 34 | sLAI.spec *** | 0.9164 | 0.1012 | 0.25 | 0.82 | 0.81 | 0.88 |
Fe | 36 | sLAI.spec *** | 1.1376 | 0.0737 | 0.92 | 0.27 | 0.24 | 0.36 |
Hg | 34 | sLAI.spec *** | 0.9259 | 0.1594 | 0.54 | 0.43 | 0.41 | 0.59 |
Ni | 32 | sLAI.spec *** | 1.1084 | −0.0177 | 0.48 | 0.57 | 0.55 | 0.60 |
Pb | 34 | sLAI.spec *** | 0.8505 | 0.2287 | 0.55 | 0.37 | 0.35 | 0.44 |
Sb | 34 | sLAI.spec *** | 0.3245 | 0.6565 | 0.15 | 0.64 | 0.63 | 0.70 |
V | 32 | sLAI.spec ** | 0.6692 | 0.4851 | 0.72 | 0.16 | 0.14 | 0.16 |
Zn | 36 | sLAI.spec *** | 0.2910 | 0.7279 | 0.31 | 0.21 | 0.19 | 0.31 |
N | 40 | sLAI.spec *** | 0.8532 | 0.1572 | 0.28 | 0.75 | 0.75 | 0.75 |
Substances | Time | Trend? |
---|---|---|
N | 2005–2020 | No statistically significant time trend |
2015–2020 | Increase, not significant | |
HM | 1990–2020 | Significant decline |
As, Cd *, Cu *, Ni *, Pb, Sb * | 2015–2020 | (* Significant) increase |
Pb, Fe | 1990–2020 | Continuous significant reduction |
Cr, Sb, Zn | 2000–2005 | Significant increase |
Al, As, Cd, Cu, Hg, Ni, V | 2000–2005 | Standstill |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schröder, W.; Nickel, S.; Dreyer, A.; Völksen, B. Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects. Pollutants 2023, 3, 89-101. https://doi.org/10.3390/pollutants3010008
Schröder W, Nickel S, Dreyer A, Völksen B. Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects. Pollutants. 2023; 3(1):89-101. https://doi.org/10.3390/pollutants3010008
Chicago/Turabian StyleSchröder, Winfried, Stefan Nickel, Annekatrin Dreyer, and Barbara Völksen. 2023. "Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects" Pollutants 3, no. 1: 89-101. https://doi.org/10.3390/pollutants3010008
APA StyleSchröder, W., Nickel, S., Dreyer, A., & Völksen, B. (2023). Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects. Pollutants, 3(1), 89-101. https://doi.org/10.3390/pollutants3010008