Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Material Sampling
2.3. Chemical Analysis
2.4. Data Analysis
3. Results
3.1. PCB Concentrations and Fingerprints in R. pseudoacacia Leaf Samples
3.2. Influence of Land Use Strata and Distance from the Potential Emission Sources
3.3. Fingerprint Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgiopoulou, M.; Lyberatos, G. Life cycle assessment of the use of alternative fuels in cement kilns: A case study. J. Environ. Manag. 2018, 216, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Smith, R.; Hill, D.; Simms, N.; Pollard, S. Wastes as co-fuels: The policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Environ. Sci. Technol. 2007, 41, 4868–4874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, R.E.; Gemmill, R.; Jones, K.C. Improvements to the UK PCDD/F and PCB atmospheric emission inventory following an emissions measurement programme. Chemosphere 1999, 38, 759–770. [Google Scholar] [CrossRef]
- Weber, R.; Iino, F.; Imagawa, T.; Takeuchi, M.; Sakurai, T.; Sadakata, M. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 2001, 44, 1429–1438. [Google Scholar] [CrossRef]
- Directive of the European Parliament and of the Council of 4 December 2000 on the Incineration of Waste, 76. 2000. Available online: http://data.europa.eu/eli/dir/2000/76/oj (accessed on 9 November 2022).
- Directive of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control) (Recast) (Text with EEA Relevance), 75. 2010. Available online: http://data.europa.eu/eli/dir/2010/75/oj (accessed on 9 November 2022).
- Hooper, S.W.; Pettigrew, C.A.; Sayler, G.S. Ecological fate, effects and prospects for the elimination of environmental polychlorinated biphenyls (PCBs). Environ. Toxicol. Chem. 1990, 9, 655–667. [Google Scholar] [CrossRef]
- Kafafi, S.A.; Afeefy, H.Y.; Ali, A.H.; Said, H.K.; Kafafi, A.G. Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor. Environ. Health Perspect. 1993, 101, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Prince, K.D.; Taylor, S.D.; Angelini, C. A global, cross-system meta-analysis of polychlorinated biphenyl biomagnification. Environ. Sci. Technol. 2020, 54, 10989–11001. [Google Scholar] [CrossRef]
- Borja, J.; Taleon, D.M.; Auresenia, J.; Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005, 40, 1999–2013. [Google Scholar] [CrossRef]
- Erickson, M.D.; Kaley, R.G. Applications of polychlorinated biphenyls. Environ. Sci. Pollut. Res. 2011, 18, 135–151. [Google Scholar] [CrossRef]
- Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Dreher, E.L.; Langer, E.; Rassaerts, H.; Kleinschmidt, P.; Strack, H.; Cook, R.; et al. Chlorinated Hydrocarbons. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006; pp. 1–86. [Google Scholar] [CrossRef]
- Lallas, P.L. The Stockholm Convention on persistent organic pollutants. Am. J. Int. Law 2001, 95, 692–708. [Google Scholar] [CrossRef]
- United Nation Environment Programme Home Page. Available online: https://wedocs.unep.org/handle/20.500.11822/31249?show=full (accessed on 9 November 2022).
- Weber, R.; Herold, C.; Hollert, H.; Kamphues, J.; Blepp, M.; Ballschmiter, K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ. Sci. Eur. 2018, 30, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breivik, K.; Gioia, R.; Chakraborty, P.; Zhang, G.; Jones, K.C. Are reductions in industrial organic contaminants emissions in rich countries achieved partly by export of toxic wastes? Environ. Sci. Technol. 2011, 45, 9154–9160. [Google Scholar] [CrossRef] [PubMed]
- Richards, G.; Agranovski, I.E. Dioxin-like pcb emissions from cement kilns during the use of alternative fuels. J. Hazard. Mater. 2017, 323, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.F. Harm-benefit analysis: Opportunities for enhancing ethical review in animal research. Lab Animal 2018, 47, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Ramavandi, B.; Sanati, A.M.; Sorial, G.A.; Hashemi, S.; Tahmasebi, S. Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone. J. Environ. Manag. 2018, 222, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.K.; Qiuping, Y.; Kapila, S.; Lower, W.R.; Puri, V. Plant uptake and metabolism of polychlorinated biphenyls (PCBs). In Plants for Environmental Studies; Wang, W., Gorsuch, J.W., Hughes, J.S., Eds.; CRC Press: New York, NY, USA, 1997; pp. 481–513. [Google Scholar]
- Webber, M.D.; Pietz, R.I.; Granato, T.C.; Svoboda, M.L. Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse. J. Environ. Qual. 1994, 23, 1019–1026. [Google Scholar] [CrossRef]
- White, J.C.; Parrish, Z.D.; Isleyen, M.; Gent, M.P.; Iannucci-Berger, W.; Eitzer, B.D.; Kelsey, J.W.; Mattina, M.I. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int. J. Phytoremediat. 2006, 8, 63–79. [Google Scholar] [CrossRef]
- Wang, S.; Luo, C.; Zhang, D.; Wang, Y.; Song, M.; Yu, Z.; Wang, Y.; Zhang, G. Reflection of stereoselectivity during the uptake and acropetal translocation of chiral PCBs in plants in the presence of copper. Environ. Sci. Technol. 2017, 51, 13834–13841. [Google Scholar] [CrossRef]
- Liu, J.; Schnoor, J.L. Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 2008, 73, 1608–1616. [Google Scholar] [CrossRef]
- Kacálková, L.; Tlustoš, P. The uptake of persistent organic pollutants by plants. Open Life Sci. 2011, 6, 223–235. [Google Scholar] [CrossRef]
- Cindoruk, S.S.; Sakin, A.E.; Tasdemir, Y. Levels of persistent organic pollutants in pine tree components and ambient air. Environ. Pollut. 2020, 256, 113418. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, F.; Jalili, A.; Kafaki, S.B.; Sagheb-Talebi, K.; Hodgson, J. Anatomical responses of leaves of Black Locust (Robinia pseudoacacia L.) to urban pollutant gases and climatic factors. Trees 2012, 26, 363–375. [Google Scholar] [CrossRef]
- Fortuna, L.; Candotto Carniel, F.; Capozzi, F.; Tretiach, M. Congruence evaluation of mercury pollution patterns around a waste incinerator over a 16-year-long period using different biomonitors. Atmosphere 2019, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Neinhuis, C.; Koch, K.; Barthlott, W. Movement and regeneration of epicuticular waxes through plant cuticles. Planta 2001, 213, 427–434. [Google Scholar] [CrossRef]
- Tranquada, G.C.; Erb, U. Morphological development and environmental degradation of superhydrophobic aspen and black locust leaf surfaces. Ecohydrology 2014, 7, 1421–1436. [Google Scholar] [CrossRef]
- Moeckel, C.; Thomas, G.O.; Barber, J.L.; Jones, K.C. Uptake and storage of PCBs by plant cuticles. Environ. Sci. Technol. 2008, 42, 100–105. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Palma, A.; Adamo, P.; Spagnuolo, V.; Giordano, S. Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmos. Environ. 2017, 150, 45–54. [Google Scholar] [CrossRef]
- Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia Home Page. Available online: http://www.arpa.fvg.it/export/sites/default/focus_ambientali/Pedemontana_Pordenonese/download/Relazione_microinquinanti_2018-2019_Maniaghese_v2.2_firmata.pdf (accessed on 9 November 2022).
- Presa D’atto Dell’intervenuta Modifica della Titolarità Dell’Autorizzazione Integrata Ambientale (AIA) di cui al Decreto n. 276 del 20 Febbraio 2014, Relativa All’esercizio Dell’attività di cui al punto 3.1, dell’Allegato VIII, alla Parte Seconda, del Decreto Legislativo 152/2006, Svolta Presso L’installazione sita nel Comune di Fanna (PN), Decreto n° 4963, 2018; Direzione Centrale Ambiente ed Energia. Available online: https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/valutazione-ambientale-autorizzazioni-contributi/FOGLIA3/DITTE/allegati/PN_AIA_12-R.pdf (accessed on 9 November 2022).
- Movimento 5 Stelle Friuli Venezia Giulia Home Page. Available online: http://www.movimento5stellefvg.it/wp-content/uploads/2018/04/ChickensPops.pdf (accessed on 9 November 2022).
- Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia Home Page. Available online: http://www.arpa.fvg.it/export/sites/default/tema/suolo/suolbio/allegati/RELAZIONE_MANIAGO_DIOSSINE.pdf (accessed on 9 November 2022).
- Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia Home Page. Available online: http://www.arpa.fvg.it/export/sites/default/focus_ambientali/Pedemontana_Pordenonese/download/Relazione-conclusiva-Maniago-Fanna-Vajont-Cavasso-Nuovo_2019.pdf (accessed on 9 November 2022).
- Kodnik, D.; Carniel Candotto, F.; Licen, S.; Tolloi, A.; Barbieri, P.; Tretiach, M. Seasonal variations of PAHs content and distribution patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea. Atmos. Environ. 2015, 113, 255–263. [Google Scholar] [CrossRef]
- Kodnik, D.; Winkler, A.; Carniel Candotto, F.; Tretiach, M. Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy. Sci. Tot. Environ. 2017, 595, 858–867. [Google Scholar] [CrossRef]
- Cecconi, E.; Fortuna, L.; Peplis, M.; Tretiach, M. Element accumulation performance of living and dead lichens in a large-scale transplant application. Environ. Sci. Pollut. Res. 2021, 28, 16214–16226. [Google Scholar] [CrossRef]
- Bacci, E.; Gaggi, C. Polychlorinated biphenyls in plant foliage: Translocation or volatilization from contaminated soils? Bull. Environ. Contam. Toxicol. 1985, 35, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Wyrzykowska, B.; Bochentin, I.; Hanari, N.; Orlikowska, A.; Falandysz, J.; Yuichi, H.; Yamashita, N. Source determination of highly chlorinated biphenyl isomers in pine needles–comparison to several PCB preparations. Environ. Pollut. 2006, 143, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Frame, G.M.; Cochran, J.W.; Bøwadt, S.S. Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J. High Res. Chromatog. 1996, 19, 657–668. [Google Scholar] [CrossRef]
- Büttner, G.; Soukup, T.; Sousa, A. CLC 2006 Technical Guidelines; Report N° 17/2007; European Environmental Agency: Copenhagen, Denmark, 2007. [Google Scholar]
- Leigh, M.B.; Prouzová, P.; Macková, M.; Macek, T.; Nagle, D.P.; Fletcher, J.S. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microb. 2006, 72, 2331–2342. [Google Scholar] [CrossRef] [Green Version]
- Tretiach, M.; Candotto Carniel, F.; Loppi, S.; Carniel, A.; Bortolussi, A.; Mazzilis, D.; Del Bianco, C. Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: A case study from NE Italy. Environ. Monit. Assess. 2011, 175, 589–600. [Google Scholar] [CrossRef]
- Chen, S.J.; Tian, M.; Zheng, J.; Zhu, Z.C.; Luo, Y.; Luo, X.J.; Mai, B.X. Elevated levels of polychlorinated biphenyls in plants, air, and soils at an e-waste site in Southern China and enantioselective biotransformation of chiral PCBs in plants. Environ. Sci. Technol. 2014, 48, 3847–3855. [Google Scholar] [CrossRef]
- Maskaoui, K.; Zhou, J.L.; Han, Y.L.; Hu, Z.; Zheng, T.L.; Hong, H.S. Contamination of soil, leaves and vegetables by polychlorinated biphenyls in Xiamen region, China. J. Environ. Sci. 2005, 17, 460–464. [Google Scholar]
- Alegria, H.; Martinez-Colon, M.; Birgul, A.; Brooks, G.; Hanson, L.; Kurt-Karakus, P. Historical sediment record and levels of PCBs in sediments and mangroves of Jobos Bay, Puerto Rico. Sci. Tot. Environ. 2016, 573, 1003–1009. [Google Scholar] [CrossRef]
- Klees, M.; Hombrecher, K.; Gladtke, D. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia: Levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data. Sci. Tot. Environ. 2017, 603, 606–615. [Google Scholar] [CrossRef]
- Luttmer, C.; Ficko, S.; Reimer, K.; Zeeb, B. Deciduous vegetation (Betula glandulosa) as a biomonitor of airborne PCB contamination from a local source in the Arctic. Sci. Tot. Environ. 2013, 445, 314–320. [Google Scholar] [CrossRef]
- Xu, D.; Deng, L.; Chai, Z.; Mao, X. Organohalogenated compounds in pine needles from Beijing city, China. Chemosphere 2004, 57, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Sofuoglu, S.C.; Yayla, B.; Kavcar, P.; Ates, D.; Turgut, C.; Sofuoglu, A. Olive tree, Olea europaea L., leaves as a bioindicator of atmospheric PCB contamination. Environ. Sci. Pollut. Res. 2013, 20, 6178–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olatunji, O.S. Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Sci. Rep. 2019, 9, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blais, J.M.; Froese, K.L.; Kimpe, L.E.; Muir, D.C.; Backus, S.; Comba, M.; Schindler, D.W. Assessment and characterization of polychlorinated biphenyls near a hazardous waste incinerator: Analysis of vegetation, snow, and sediments. Environ. Toxicol. Chem. 2003, 22, 126–133. [Google Scholar] [CrossRef]
- Dang, V.D.; Walters, D.M.; Lee, C.M. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream. Environ. Toxicol. Chem. 2016, 35, 2192–2198. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, S.J.; Li, Q.Q.; Zeng, Y.; Yan, X.; Mai, B.X. Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field. Environ. Pollut. 2020, 263, 114400. [Google Scholar] [CrossRef]
- Odabasi, M.; Ozgunerge Falay, E.; Tuna, G.; Altiok, H.; Kara, M.; Dumanoglu, Y.; Bayram, A.; Tolunay, D.; Elbir, T. Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region. Environ. Sci. Technol. 2015, 49, 2105–2114. [Google Scholar] [CrossRef]
- Wyrzykowska, B.; Hanari, N.; Orlikowska, A.; Bochentin, I.; Rostkowski, P.; Falandysz, J.; Taniyasu, S.; Horii, Y.; Jiang, Q.; Yamashita, N. Polychlorinated biphenyls and-naphthalenes in pine needles and soil from Poland–Concentrations and patterns in view of long-term environmental monitoring. Chemosphere 2007, 67, 1877–1886. [Google Scholar] [CrossRef]
- Falandysz, J.; Orlikowska, A.; Jarzyńska, G.; Bochentin, I.; Wyrzykowska, B.; Drewnowska, M.; Hanari, N.; Horii, Y.; Yamashita, N. Levels and sources of planar and non-planar PCBs in pine needles across Poland. J. Environ. Sci. Health Part A 2012, 47, 688–703. [Google Scholar] [CrossRef]
- Hanedar, A.; Güneş, E.; Kaykioğlu, G.; Çelik, S.Ö.; Cabi, E. Presence and distributions of POPS in soil, atmospheric deposition, and bioindicator samples in an industrial-agricultural area in Turkey. Environ. Monit. Assess. 2019, 191, 42. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.; Xie, H.; Hu, X.; Li, W.; Zhang, J.; Yuan, T.; Wang, W. Seasonal and spatial character of PCBs in a chemical industrial zone of Shanghai, China. Environ. Geochem. Health 2007, 29, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Amakura, Y.; Tsutsumi, T.; Tanno, K.; Nomura, K.; Yanagi, T.; Kono, Y.; Yoshimura, M.; Maitani, T.; Matsuda, R.; Yoshida, T. Dioxin concentrations in commercial health tea materials in Japan. J. Health Sci. 2009, 55, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Garí, M.; Bosch, C.; Grimalt, J.O.; Sunyer, J. Impacts of atmospheric chlor-alkali factory emissions in surrounding populations. Environ. Int. 2014, 65, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Hong, S.H.; Yim, U.H.; Shim, W.J. Biomonitoring background levels of PCBs and PBDEs in Seoul metropolitan atmosphere for possible health effects. Toxicol. Environ. Health Sci. 2009, 1, 109–116. [Google Scholar] [CrossRef]
- Davidson, D.A.; Wilkinson, A.C.; Blais, J.M.; Kimpe, L.E.; McDonald, K.M.; Schindler, D.W. Orographic cold-trapping of persistent organic pollutants by vegetation in mountains of western Canada. Environ. Sci. Technol. 2003, 37, 209–215. [Google Scholar] [CrossRef]
- Sajwan, K.S.; Kumar, K.S.; Kelley, S.; Loganathan, B.G. Deposition of organochlorine pesticides, PCBs (Aroclor 1268), and PBDEs in selected plant species from a superfund site at Brunswick, Georgia, USA. Bull. Environ. Contam. Toxicol. 2009, 82, 444–449. [Google Scholar] [CrossRef]
- Brambilla, G.; Abate, V.; di Domenico, A.; Esposito, M.; Fulgenzi, A.R.; Iacovella, N.; Serpe, F.P.; Tassinari, M. Non-dioxin-like PCB and PBDE deposition on Zea mays L. leaves: Modelled contamination in milk from dairy animals fed on silage. Food Addit. Contam. A 2015, 32, 864–873. [Google Scholar] [CrossRef]
- Gabryszewska, M.; Gworek, B. Impact of municipal and industrial waste incinerators on PCBs content in the environment. PLoS ONE 2020, 15, e0242698. [Google Scholar] [CrossRef]
- Romanić, S.H.; Klinčić, D. Organochlorine compounds in pine needles from Croatia. Bull. Environ. Contam. Toxicol. 2012, 88, 838–841. [Google Scholar] [CrossRef]
- Grassi, P.; Fattore, E.; Generoso, C.; Fanelli, R.; Arvati, M.; Zuccato, E. Polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in fruit and vegetables from an industrial area in northern Italy. Chemosphere 2010, 79, 292–298. [Google Scholar] [CrossRef]
- Nakagawa, R.; Hori, T.; Tobiishi, K.; Iida, T.; Tsutsumi, T.; Sasaki, K.; Toyoda, M. Levels and tissue-dependent distribution of dioxin in Japanese domestic leafy vegetables––from the 1999 national investigation. Chemosphere 2002, 48, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.F.; Hawker, D.W.; McLachlan, M.S.; Connell, D.W. PAHS, PCDD/Fs, PCBs and HCB in leaves from Brisbane, Australia. Chemosphere 2001, 43, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Al Nasir, F.; Batarseh, M.I. Agricultural reuse of reclaimed water and uptake of organic compounds: Pilot study at Mutah University wastewater treatment plant, Jordan. Chemosphere 2008, 72, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Luo, C.; Li, J.; Zhang, G. Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China. Environ. Sci. Pollut. Res. 2015, 22, 11626–11633. [Google Scholar] [CrossRef]
- Qiu, Y.W.; Qiu, H.L.; Zhang, G.; Li, J. Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere 2019, 217, 195–203. [Google Scholar] [CrossRef]
- Loganathan, B.G.; Kumar, K.S.; Seaford, K.D.; Sajwan, K.S.; Hanari, N.; Yamashita, N. Distribution of persistent organohalogen compounds in pine needles from selected locations in Kentucky and Georgia, USA. Arch. Environ. Contam. Toxicol. 2008, 54, 422–439. [Google Scholar] [CrossRef] [PubMed]
- Terzi, M.; Acemi, A.; Ergül, H.A.; Özen, F. PAH and PCB Levels in Malva sylvestris L. specimens collected from Kocaeli, Turkey. Biomonitoring 2016, 2, 42–46. [Google Scholar] [CrossRef]
- Al Dine, E.J.; Mokbel, H.; Elmoll, A.; Massemin, S.; Vuilleumier, S.; Toufaily, J.; Hanieh, T.; Millet, M. Concomitant evaluation of atmospheric levels of polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons in Strasbourg (France) using pine needle passive samplers. Environ. Sci. Pollut. Res. 2015, 22, 17850–17859. [Google Scholar] [CrossRef]
- Cui, S.; Hough, R.; Fu, Q.; Qi, X.; Liu, D.; Cooper, P.; Li, P.; Zhang, Z. Concentrations and uptake pathways of polychlorinated biphenyls from soil to grass. Ecotox. Environ. Safe 2019, 182, 109428. [Google Scholar] [CrossRef]
- Klánová, J.; Čupr, P.; Baráková, D.; Šeda, Z.; Anděl, P.; Holoubek, I. Can pine needles indicate trends in the air pollution levels at remote sites? Environ. Pollut. 2009, 157, 3248–3254. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Wang, X.P.; Li, S.H.; Yu, W.S.; Kattel, D.B.; Wang, W.C.; Devkota, L.P.; Yao, T.D.; Joswiak, D.R. Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the Himalayas, Nepal. Environ. Pollut. 2014, 192, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Ratola, N.; Ramos, S.; Homem, V.; Santos, L.; Alves, A. An analytical multi-residue approach for the determination of semi-volatile organic pollutants in pine needles. Anal. Chim. Acta 2015, 858, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Graziani, N.S.; Tames, M.F.; Mateos, A.C.; Silva, J.A.; Ramos, S.; Homem, V.; Ratola, N.; Carreras, H. Estimation of urban POP and emerging SVOC levels employing Ligustrum lucidum leaves. Atmos. Pollut. Res. 2019, 10, 1524–1530. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.Z.; Zhao, X.R.; Cui, S.M.; Gan, Z.F.; Jiao, L.X.; Liu, L.S.; Lei, K.; Zheng, B.H. Distribution characteristics of the typical persistent organic pollutants (POPs) in Suaeda heteroptera. Huan Jing Ke Xue 2010, 31, 2456–2461. [Google Scholar] [PubMed]
- Romanić, S.H.; Kljaković-Gašpić, Z.; Bituh, T.; Žužul, S.; Dvoršćak, M.; Fingler, S.; Jurasović, J.; Klinčić, D.; Marović, G.; Orct, T.; et al. The impact of multiple anthropogenic contaminants on the terrestrial environment of the Plitvice Lakes National Park, Croatia. Environ. Monit. Assess. 2016, 188, 27. [Google Scholar] [CrossRef]
- Ivanov, V.; Sandell, E. Characterization of polychlorinated biphenyl isomers in Sovol and trichlorodiphenyl formulations by high-resolution gas chromatography with electron capture detection and high-resolution gas chromatography-mass spectrometry techniques. Environ. Sci. Technol. 1992, 26, 2012–2017. [Google Scholar] [CrossRef]
- Gabrielcig, F.; Lenarduzzi, F.; Patrone, O. Programma Provinciale Attuativo del Programma Regionale per la Decontaminazione e lo Smaltimento Degli Apparecchi Non Soggetti ad Inventario Contenenti PCB e del PCB in Essi Contenuto; Provincia di Gorizia, Direzione Territorio e Ambiente: Gorizia, Italy, 2011; p. 43, 3 allegati. [Google Scholar]
- Castanheiro, A.; Joos, P.; Wuyts, K.; De Wael, K.; Samson, R. Leaf-deposited semi-volatile organic compounds (SVOCs): An exploratory study using GCxGC-TOFMS on leaf washing solutions. Chemosphere 2019, 214, 103–110. [Google Scholar] [CrossRef]
- Bacci, E.; Gaggi, C. Chlorinated hydrocarbon vapours and plant foliage: Kinetics and applications. Chemosphere 1987, 16, 2515–2522. [Google Scholar] [CrossRef]
- Van Eijkeren, J.C.; Zeilmaker, M.J.; Kan, C.A.; Traag, W.A.; Hoogenboom, L.A.P. A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs. Food Addit. Contam. 2006, 23, 509–517. [Google Scholar] [CrossRef]
Sampling Site | n PCBs | ∑12 DL-PCB | ∑20 NDL-PCB | ∑32 PCB |
---|---|---|---|---|
4A | 18 | 86.00 | 13.85 | 99.85 |
1E | 12 | 70.70 | 9.50 | 80.20 |
5E | 2 | <LOD | 8.40 | 8.40 |
4C | 3 | 3.19 | 1.50 | 4.69 |
5A | 1 | 4.60 | <LOD | 4.60 |
2B | 1 | <LOD | 4.00 | 4.00 |
2E | 1 | <LOD | 4.00 | 4.00 |
MAN | 1 | 3.00 | <LOD | 3.00 |
5C | 1 | <LOD | 2.90 | 2.90 |
1A | 2 | 2.67 | <LOD | 2.67 |
4F | 2 | 2.59 | <LOD | 2.59 |
6D | 1 | 2.40 | <LOD | 2.40 |
4B | 1 | 2.00 | <LOD | 2.00 |
3F | 2 | 0.75 | 1.20 | 1.95 |
2F | 1 | 1.90 | <LOD | 1.90 |
6A | 1 | <LOD | 1.70 | 1.70 |
6E | 1 | 0.94 | <LOD | 0.94 |
2C | 1 | 0.71 | <LOD | 0.71 |
7D | 1 | 0.63 | <LOD | 0.63 |
1B | 0 | <LOD | <LOD | <LOD |
1C | 0 | <LOD | <LOD | <LOD |
1D | 0 | <LOD | <LOD | <LOD |
1F | 0 | <LOD | <LOD | <LOD |
2D | 0 | <LOD | <LOD | <LOD |
3A | 0 | <LOD | <LOD | <LOD |
3B | 0 | <LOD | <LOD | <LOD |
3C | 0 | <LOD | <LOD | <LOD |
3D | 0 | <LOD | <LOD | <LOD |
3E | 0 | <LOD | <LOD | <LOD |
4D | 0 | <LOD | <LOD | <LOD |
4E | 0 | <LOD | <LOD | <LOD |
5D | 0 | <LOD | <LOD | <LOD |
6B | 0 | <LOD | <LOD | <LOD |
7B | 0 | <LOD | <LOD | <LOD |
7C | 0 | <LOD | <LOD | <LOD |
Arba | 0 | <LOD | <LOD | <LOD |
CAV | 0 | <LOD | <LOD | <LOD |
Average | 5.29 | 1.73 | 6.48 | |
Minimum | 0.60 | 0.60 | 0.60 | |
Maximum | 86.00 | 13.85 | 99.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortuna, L.; Tretiach, M. Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant. Pollutants 2023, 3, 12-26. https://doi.org/10.3390/pollutants3010002
Fortuna L, Tretiach M. Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant. Pollutants. 2023; 3(1):12-26. https://doi.org/10.3390/pollutants3010002
Chicago/Turabian StyleFortuna, Lorenzo, and Mauro Tretiach. 2023. "Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant" Pollutants 3, no. 1: 12-26. https://doi.org/10.3390/pollutants3010002
APA StyleFortuna, L., & Tretiach, M. (2023). Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant. Pollutants, 3(1), 12-26. https://doi.org/10.3390/pollutants3010002