Structural and Electrical Properties of Graphite Platelet Films Deposited on Low-Density Polyethylene Substrate †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warner, J.H.; Schaffel, F.; Rummeli, M.; Bachmatiuk, A. Graphene: Fundamentals and Emergent Applications; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.B.; Sariciftci, N.S. Progress in plastic electronic devices. Annu. Rev. Mater. Res. 2006, 36, 199–230. [Google Scholar] [CrossRef]
- Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef]
- Kondratov, A.P.; Zueva, A.M.; Varakin, R.S.; Taranec, I.P.; Savenkova, I.A. Polymer film strain gauges for measuring large elongations. IOP Conf. Ser. Mater. Sci. Eng. 2018, 312, 012013. [Google Scholar] [CrossRef]
- Huang, X.; Leng, T.; Zhang, X.; Chen, J.C.; Chang, K.H.; Geim, A.K.; Novoselov, K.S.; Hu, Z. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 2015, 106, 203105. [Google Scholar] [CrossRef]
- Longo, A.; Verucchi, R.; Aversa, L.; Tatti, R.; Ambrosio, A.; Orabona, E.; Coscia, U.; Carotenuto, G.; Maddalena, P. Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment. Nanotechnology 2017, 28, 224002. [Google Scholar] [CrossRef] [PubMed]
- Bonavolontà, C.; Camerlingo, C.; Carotenuto, G.; De Nicola, S.; Longo, A.; Meola, C.; Boccardi, S.; Palomba, M.; Pepe, G.P.; Valentino, M. Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor applications. Sens. Actuators A Phys. 2016, 252, 26–34. [Google Scholar] [CrossRef]
- De Castro, R.K.; Araujo, J.R.; Valaski, R.; Costa, L.O.O.; Archanjo, B.S.; Fragneaud, B.; Cremona, M.; Achete, C. New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 2015, 273, 509–518. [Google Scholar] [CrossRef]
- Palomba, M.; Longo, A.; Carotenuto, G.; Coscia, U.; Ambrosone, G.; Rusciano, G.; Nenna, G.; Barucca, G.; Longobardo, L. Optical and electrical characterizations of graphene nanoplatelet coatings on low density polyethylene. J. Vac. Sci. Technol. B 2018, 36, 01A104. [Google Scholar] [CrossRef]
- Coscia, U.; Palomba, M.; Ambrosone, G.; Barucca, G.; Cabibbo, M.; Mengucci, P.; de Asmundis, R.; Carotenuto, G. A new micromechanical approach for the preparation of graphene nanoplatelets deposited on polyethylene. Nanotechnology 2017, 28, 194001. [Google Scholar] [CrossRef] [PubMed]
- Fechine, G.J.M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E.S.; De Oliveira, R.V.B.; Hu, X.; Yarovsky, I.; Neto, A.H.C.; Ozyilmaz, B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224–231. [Google Scholar] [CrossRef]
- Martins, L.G.P.; Song, Y.; Zeng, T.; Dresselhaus, M.S.; Kong, J.; Araujo, P.T. Direct transfer of graphene onto flexible substrates. PNAS 2013, 110, 17762–17767. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Huang, Y.; Wang, W.; Li, R.; Liu, P.; Liu, C.; Zhang, Y. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 2014, 29, 1288–1294. [Google Scholar] [CrossRef]
- Murray, K.A.; Kennedy, J.E.; McEvoy, B.; Vrain, O.; Ryan, D.; Cowman, R.; Higginbothama, C.L. Characterisation of the Surface and Structural Properties of Gamma Ray and Electron Beam Irradiated Low Density Polyethylene. Int. J. Mat. Sci. 2013, 3, 1–8. [Google Scholar]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution-based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Dinh, T.; Phan, H.-P.; Qamar, A.; Woodfield, P.; Nguyen, N.-T.; Dao, D.V. Thermoresistive effectfor advanced thermal sensor: Fundamentals, design consideration and application. J. Microelectromech. Syst. 2017, 26, 966–986. [Google Scholar] [CrossRef]
- Iwashita, N.; Imagawa, H.; Nishiumi, W. Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products. Carbon Am. Carbon Commit. 2013, 61, 602–608. [Google Scholar] [CrossRef]
- Palomba, M.; Carotenuto, G.; Longo, A.; Sorrentino, A.; Di Bartolomeo, A.; Iemmo, L.; Urban, F.; Giubileo, F.; Barucca, G.; Rovere, M.; et al. Thermoresistive Properties of Graphite Platelet Films Supported by Different Substrates. Materials 2019, 12, 3638. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, A.; Iemmo, L.; Urban, F.; Palomba, M.; Carotenuto, G.; Longo, A.; Sorrentino, A.; Giubileo, F.; Barucca, G.; Rovere, M.; et al. Graphite platelet films deposited by spray technique on low density polyethylene substrates. Mater. Today Proc. 2020, 20, 87–90. [Google Scholar] [CrossRef]
- Di, W.; Zhang, G.; Xu, J.; Peng, Y.; Wang, X.; Xie, Z. Positive temperature coefficient/negative temperature coefficient effect of Low density polyethylene filled with a mixture of carbon black and carbon filler. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 3094–3101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, A.; Palomba, M.; Urban, F.; Di Bartolomeo, A.; Sorrentino, A.; Barucca, G.; Ambrosone, G.; Coscia, U.; Carotenuto, G. Structural and Electrical Properties of Graphite Platelet Films Deposited on Low-Density Polyethylene Substrate. Mater. Proc. 2021, 4, 38. https://doi.org/10.3390/IOCN2020-07917
Longo A, Palomba M, Urban F, Di Bartolomeo A, Sorrentino A, Barucca G, Ambrosone G, Coscia U, Carotenuto G. Structural and Electrical Properties of Graphite Platelet Films Deposited on Low-Density Polyethylene Substrate. Materials Proceedings. 2021; 4(1):38. https://doi.org/10.3390/IOCN2020-07917
Chicago/Turabian StyleLongo, Angela, Mariano Palomba, Francesca Urban, Antonio Di Bartolomeo, Andrea Sorrentino, Gianni Barucca, Giuseppina Ambrosone, Ubaldo Coscia, and Gianfranco Carotenuto. 2021. "Structural and Electrical Properties of Graphite Platelet Films Deposited on Low-Density Polyethylene Substrate" Materials Proceedings 4, no. 1: 38. https://doi.org/10.3390/IOCN2020-07917
APA StyleLongo, A., Palomba, M., Urban, F., Di Bartolomeo, A., Sorrentino, A., Barucca, G., Ambrosone, G., Coscia, U., & Carotenuto, G. (2021). Structural and Electrical Properties of Graphite Platelet Films Deposited on Low-Density Polyethylene Substrate. Materials Proceedings, 4(1), 38. https://doi.org/10.3390/IOCN2020-07917