Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,382)

Search Parameters:
Keywords = spray technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 10559 KB  
Review
Interfacial Bonding and Residual Stress of Single Splats on Solid Substrates: A Literature Review
by Chao Kang and Motoki Sakaguchi
Coatings 2025, 15(11), 1259; https://doi.org/10.3390/coatings15111259 (registering DOI) - 31 Oct 2025
Abstract
The impingement of a molten droplet on a solid surface, forming a “splat,” is a fundamental phenomenon observed across numerous industrial surface engineering techniques. For example, thermal spray deposition is widely used to create metal, ceramic, polymer, and composite coatings that are vital [...] Read more.
The impingement of a molten droplet on a solid surface, forming a “splat,” is a fundamental phenomenon observed across numerous industrial surface engineering techniques. For example, thermal spray deposition is widely used to create metal, ceramic, polymer, and composite coatings that are vital for aerospace, biomedical, electronics, and energy applications. Significant progress has been made in understanding droplet impact behavior, largely driven by advancements in high-resolution and high-speed imaging techniques, as well as computational resources. Although droplet impact dynamics, splat morphology, and interfacial bonding mechanisms have been extensively reviewed, a comprehensive overview of the mechanical behaviors of single splats, which are crucial for coating performance, has not been reported. This review bridges that gap by offering an in-depth analysis of bonding strength and residual stress in single splats. The various experimental techniques used to characterize these properties are thoroughly discussed, and a detailed review of the analytical models and numerical simulations developed to predict and understand residual stress evolution is provided. Notably, the complex interplay between bonding strength and residual stress is then discussed, examining how these two critical mechanical attributes are interrelated and mutually influence each other. Subsequently, effective strategies for improving interfacial bonding are explored, and key factors that influence residual stress are identified. Furthermore, the fundamental roles of splat flattening and formation dynamics in determining the final mechanical properties are critically examined, highlighting the challenges in integrating fluid dynamics with mechanical analysis. Thermal spraying serves as the primary context, but other relevant applications are briefly considered. Cold spray splats are excluded because of their distinct bonding and stress generation mechanisms. Finally, promising future research directions are outlined to advance the understanding and control of the mechanical properties in single splats, ultimately supporting the development of more robust and reliable coating technologies. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

28 pages, 7514 KB  
Review
Low-Cost Application Strategies of Marine Titanium Alloys: Titanium/Steel Dissimilar Materials
by Wei Gao, Shicheng Wang, Han Zhang, Qi Wang, Hao Liu, Hongying Yu and Dongbai Sun
Metals 2025, 15(11), 1205; https://doi.org/10.3390/met15111205 - 29 Oct 2025
Viewed by 81
Abstract
Titanium and its alloys are well-suited for marine engineering owing to their high specific strength and superior corrosion resistance. However, their high cost remains a key barrier to widespread marine application. Titanium/steel (Ti/Fe) dissimilar materials provide a promising solution by integrating titanium’s corrosion [...] Read more.
Titanium and its alloys are well-suited for marine engineering owing to their high specific strength and superior corrosion resistance. However, their high cost remains a key barrier to widespread marine application. Titanium/steel (Ti/Fe) dissimilar materials provide a promising solution by integrating titanium’s corrosion resistance with the high strength of steel, thereby significantly reducing costs. This review systematically assesses the potential preparation strategies for Ti/Fe dissimilar materials, such as explosive welding, rolling, high-energy beam cladding, and cold spray, to meet the large-scale application requirements in marine engineering. Advanced welding techniques for joining Ti/Fe joints are also discussed. The advantages and issues of Ni, Cu, Fe, and Al interlayers suitable for marine engineering applications in inhibiting Fe-Ti IMCs are introduced, with a focus on their potential in promoting the development of economically efficient ocean engineering. A comprehensive evaluation is conducted on the performance of Ti/Fe dissimilar materials, particularly their corrosion resistance and fatigue resistance in marine environments. This review aims to provide a reference for the theoretical research, preparation strategies, and application expansion of low-cost Ti/Fe dissimilar materials in marine engineering. Full article
Show Figures

Figure 1

18 pages, 2774 KB  
Article
Dimensional Accuracy of a Sterilized and Disinfected 3D-Printed Surgical Guide: An In Vitro Study
by Sultan Meteb Alshammari, Abdulrahman Jafar Alhaddad, Thamer Y. Marghalani, Walaa A. Babeer and Samar Hatem Abuzinadah
Microorganisms 2025, 13(11), 2457; https://doi.org/10.3390/microorganisms13112457 - 27 Oct 2025
Viewed by 266
Abstract
Despite the widespread use of surgical guides, there is no universal sterilization protocol. Surgical guides are often designed for single use, but can become contaminated, which increases the risks of infection and implant failure. Purpose: This study evaluates the effects of alcohol immersion, [...] Read more.
Despite the widespread use of surgical guides, there is no universal sterilization protocol. Surgical guides are often designed for single use, but can become contaminated, which increases the risks of infection and implant failure. Purpose: This study evaluates the effects of alcohol immersion, alcohol spray, low temperature, and steam sterilization on the dimensional stability of surgical guides to ensure accurate implant placement and reduce failure. Material and Methods: One standard dental model was scanned using a laboratory scanner. Ninety guides were printed and were then divided into six groups allocated as control, alcohol spray, alcohol immersion with ultrasonication, low-temperature dry sterilization, and two autoclave methods. Specimens were stored in dry–dark media and scanned at 0, 3, and 7 days, with dimensional changes assessed using CloudCompare. The Shapiro–Wilk, Levene’s, Repeated measures one-way ANOVA, and Tukey’s post hoc tests were used to determine statistical differences. Results: Time significantly affects stability, with RMS values improving over time. Autoclave 121 °C and low-temperature 54 °C sterilization showed the lowest RMS values, indicating better stability. Conclusions: Within the limitations of the present study, the most effective approach for maintaining the dimensional stability of surgical guides was autoclaving at 121 °C, +1 bar for 20 min, and the second-best technique was low-temperature dry sterilization at 54 °C for 1 h. Full article
(This article belongs to the Special Issue Oral Microbes and Human Health, Second Edition)
Show Figures

Figure 1

18 pages, 7364 KB  
Article
Enhanced Moisture Management in Textiles via Spray-Coated Water-Based Polyhydroxyalkanoate Dispersions
by Marta A. Teixeira, Wael Almustafa, Joana Castro, Catarina Guise, Helena Vilaça and Carla J. Silva
Coatings 2025, 15(11), 1237; https://doi.org/10.3390/coatings15111237 - 23 Oct 2025
Viewed by 377
Abstract
Developing sustainable textile finishes that enhance moisture management and breathability remains a significant challenge in designing high-performance apparel. In this study, we propose an eco-friendly coating strategy utilizing an aqueous dispersion of poly(3-hydroxybutyrate)-diol (PHB.E.0), a member of the polyhydroxyalkanoate (PHA) family. This coating [...] Read more.
Developing sustainable textile finishes that enhance moisture management and breathability remains a significant challenge in designing high-performance apparel. In this study, we propose an eco-friendly coating strategy utilizing an aqueous dispersion of poly(3-hydroxybutyrate)-diol (PHB.E.0), a member of the polyhydroxyalkanoate (PHA) family. This coating was applied to woven polyester (PES) and cotton (CO) fabrics using a low-impact spray-coating technique, aiming to improve functional properties while maintaining environmental sustainability. This solvent-free process significantly reduces chemical usage and energy demand, aligning with sustainable manufacturing goals. Successful deposition of the coating was confirmed by scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), elemental (C/O) analysis, and thermogravimetric analysis (TGA), which also revealed substrate-dependent thermal behaviour. Wettability, water absorption, and permeability tests showed that the coated fabrics retained their hydrophilic character. PHB.E.0 coatings led to a significant reduction in air permeability, particularly after hot pressing at 180 °C, from ≈670 to ≈171 L·m−2 s−1 for PES and from ≈50 to ≈30 L·m−2·s−1 for CO, without compromising water vapor permeability. All coated samples maintained high breathability, essential for wearer comfort. These results demonstrate that PHB.E.0 coatings enhance wind resistance while preserving moisture vapor transport, offering a sustainable and effective solution for functional sportswear. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

23 pages, 364 KB  
Review
Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy
by Khyati Bidani, Vishali Moond, Madhvi Nagar, Arkady Broder and Nirav Thosani
Diagnostics 2025, 15(20), 2625; https://doi.org/10.3390/diagnostics15202625 - 17 Oct 2025
Viewed by 612
Abstract
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for [...] Read more.
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for routine practice vary. This review critically evaluates both guideline-endorsed and investigational optical imaging techniques across major gastrointestinal indications, highlighting diagnostic performance, level of validation, current guideline recommendations, and practical challenges to adoption. In Barrett’s esophagus, narrow-band imaging (NBI) is guideline-endorsed, while acetic acid chromoendoscopy is validated in expert centers. For gastric intestinal metaplasia and early gastric cancer, magnifying NBI achieves diagnostic accuracies exceeding 90% and is guideline-recommended, with acetic acid chromoendoscopy aiding in margin delineation. In inflammatory bowel disease, dye-spray chromoendoscopy is the reference standard for dysplasia surveillance, with virtual methods such as NBI, FICE, and i-SCAN serving as practical alternatives when dye application is not feasible. In the colorectum, NBI supports validated optical diagnosis strategies (resect-and-discard, diagnose-and-leave), while dye-based chromoendoscopy improves detection of flat and serrated lesions. Capsule endoscopy remains the standard for small bowel evaluation of bleeding, Crohn’s disease, and tumors, with virtual enhancement, intelligent chromo capsule endoscopy, and AI-assisted interpretation emerging as promising adjuncts. Pancreaticobiliary applications of optical imaging are also advancing, though current evidence is still preliminary. Investigational modalities including confocal laser endomicroscopy, optical coherence tomography, autofluorescence, Raman spectroscopy, and fluorescence molecular imaging show potential but remain largely restricted to research or expert settings. Guideline-backed modalities such as NBI and dye-based chromoendoscopy are established for clinical practice and supported by robust evidence, whereas advanced techniques remain investigational. Future directions will rely on broader validation, integration of artificial intelligence, and adoption of molecularly targeted probes and next-generation capsule technologies, which together may enhance accuracy, efficiency, and standardization in gastrointestinal endoscopy. Full article
(This article belongs to the Special Issue Advances in Gastrointestinal Endoscopy: From Diagnosis to Therapy)
32 pages, 1046 KB  
Review
Solidification Materials and Technology for Solid Self-Emulsifying Drug Delivery Systems
by Kyungho Baek and Sung Giu Jin
Pharmaceuticals 2025, 18(10), 1550; https://doi.org/10.3390/ph18101550 - 15 Oct 2025
Cited by 1 | Viewed by 462
Abstract
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid [...] Read more.
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid SEDDS. This review provides a comprehensive analysis of the recent advancements in solid SEDDS, focusing on the pivotal roles of solid carriers and solidification techniques. We examine a wide range of carrier materials, including mesoporous silica, polymers, mesoporous carbon, porous carbonate salts, and clay-based materials, highlighting how their physicochemical properties can be leveraged to control drug loading, release kinetics, and in vivo performance. We also detail the various solidification methods, such as spray drying, hot melt extrusion, adsorption, and 3D printing, and their impact on the final product’s quality and scalability. Furthermore, this review explores applications of solid SEDDS, including controlled release, mucoadhesive technology, and targeted drug delivery, as well as the key commercial challenges and future perspectives. By synthesizing these diverse aspects, this paper serves as a valuable resource for designing high-performance solid SEDDS with enhanced stability, bioavailability, and functional versatility. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 2843 KB  
Article
Design of Polymeric Delivery Systems for Lycium barbarum Phytochemicals: A Spray Drying Approach for Nutraceuticals
by Filipa Teixeira, Angelina Rut, Paulo C. Costa, Francisca Rodrigues and Berta Nogueiro Estevinho
Foods 2025, 14(20), 3504; https://doi.org/10.3390/foods14203504 - 15 Oct 2025
Viewed by 331
Abstract
Goji berries (Lycium barbarum L.) are extremely rich in bioactive compounds, including phenolics, flavonoids, and vitamin C, which contribute to the strong antioxidant and immunomodulatory properties, positioning them as a promising candidate for nutraceutical applications. However, due to some limitations such as [...] Read more.
Goji berries (Lycium barbarum L.) are extremely rich in bioactive compounds, including phenolics, flavonoids, and vitamin C, which contribute to the strong antioxidant and immunomodulatory properties, positioning them as a promising candidate for nutraceutical applications. However, due to some limitations such as poor bioavailability and instability, encapsulation via spray drying with polymeric carriers provides a practical strategy to improve their stability, bioavailability, and applicability in the health sector. In this study, goji berry extract (GBE) was obtained via ultrasound-assisted extraction (UAE) and encapsulated using spray drying with four different polymers: alginate, pectin, Eudragit E100 and RS30D. GBE-loaded microparticles showed improved production yields (e.g., 40.3% for Alginate + GBE vs. 13.9% for Alginate alone) and varying particle sizes (1.9–4.4 µm). The antioxidant/antiradical activities were retained to different extents, depending on the carrier, with RS30D + GBE displaying the highest TPC (15.51 mg GAE (gallic acid equivalents)/g), FRAP (59.83 µmol FSE (ferrous sulphate equivalents)/g), and DPPH activities (3.50 mg TE (Trolox equivalents)/g). Biocompatibility was confirmed in HT29-MTX cell lines for all produced microparticles. These findings support the use of spray-dried polymeric carriers to enhance the functional performance and stability of goji berry bioactive compounds in future nutraceutical applications. Full article
Show Figures

Figure 1

21 pages, 3438 KB  
Article
Research on Enhancing the Solubility and Bioavailability of Canagliflozin Using Spray Drying Techniques with a Quality-by-Design Approach
by Ji Ho Lee, Seong Uk Choi, Tae Jong Kim, Na Yoon Jeong, Hyun Seo Paeng and Kyeong Soo Kim
Pharmaceutics 2025, 17(10), 1319; https://doi.org/10.3390/pharmaceutics17101319 - 11 Oct 2025
Viewed by 392
Abstract
Objectives: The objective of this study was to enhance the solubility and bioavailability of canagliflozin (CFZ) using a spray drying technique with a Quality-by-Design (QbD) approach. Methods: The formulation of CFZ-loaded solid dispersions (CFZ-SDs) was optimized using a Box–Behnken design (BBD) [...] Read more.
Objectives: The objective of this study was to enhance the solubility and bioavailability of canagliflozin (CFZ) using a spray drying technique with a Quality-by-Design (QbD) approach. Methods: The formulation of CFZ-loaded solid dispersions (CFZ-SDs) was optimized using a Box–Behnken design (BBD) with three factors at three levels, resulting in a total of fifteen experiments, including three central point replicates. The design space was determined using the BBD, and the optimized CFZ-SD was evaluated for reproducibility, morphology, and physical properties and subjected to in vitro and in vivo tests. Results: The optimal values for each X factor were identified using a response optimization tool, achieving a yield (Y1) of 62.8%, a solubility (Y2) of 9941 μg/mL, and a particle size (Y3) of 5.89 μm, all of which were within the 95% prediction interval (PI). Additionally, amorphization induced by spray drying was confirmed for the optimized CFZ-SD using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) analyses. In in vitro dissolution tests, the final dissolution rate of the CFZ-SD increased 3.58-fold at pH 1.2 and 3.84-fold at pH 6.8 compared to an Invokana® tablet. In addition, relative to CFZ, it showed an 8.67-fold and 8.85-fold increase at pH 1.2 and pH 6.8, respectively. The in vivo pharmacokinetic behavior of CFZ and the CFZ-SD was evaluated in Sprague–Dawley rats following oral administration at a dose of 5 mg/kg. The AUC of the CFZ-SD increased 1.9-fold compared to that of CFZ. Conclusions: In this study, a solid dispersion (SD) formulation of CFZ, a BCS class IV SGLT2 inhibitor, was developed and optimized using a QbD approach to enhance solubility and oral bioavailability. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Graphical abstract

13 pages, 8068 KB  
Article
Application of Water-Sensitive Paper for Spray Performance Evaluation in Aeroponics via a Segmentation-Based Algorithm
by Muhammad Amjad, Yeong-Hyeon Shin, Je-Min Park, Woo-Jae Cho and Uk-Hyeon Yeo
Appl. Sci. 2025, 15(20), 10928; https://doi.org/10.3390/app152010928 - 11 Oct 2025
Viewed by 376
Abstract
Continued population growth demands a significant increase in agricultural production to ensure food security. However, agricultural output is limited by environmental crises and the negative impacts of open-field farm practices. As an alternative, vertical farming techniques, such as aeroponics, can be utilized to [...] Read more.
Continued population growth demands a significant increase in agricultural production to ensure food security. However, agricultural output is limited by environmental crises and the negative impacts of open-field farm practices. As an alternative, vertical farming techniques, such as aeroponics, can be utilized to optimize the use of resources. However, the uneven size and distribution of spray droplets in aeroponics, issues that affect root development and nutrient delivery, continue to be problematic in spray performance analysis. In aeroponics, nutrient solutions are delivered to plant roots through pressurized nozzles, and the effectiveness of this delivery depends on the spray characteristics. Variations in flow rates directly affect droplet size, density, and coverage, which in turn influence nutrient uptake and crop growth. In this study, the flow rate was adjusted (3, 4.5, and 6 L/min) to quantitatively analyze spray performance using water-sensitive paper (WSP) as a deposit collector via a quick assessment method. Subsequently, image-processing techniques such as threshold segmentation and morphological operations were applied to isolate individual spray droplets on the WSP images. This technique enabled the quantification of the droplet’s coverage area, size, density, and uniformity to effectively evaluate spray performance. One-way ANOVA indicated that all the spray parameters varied significantly with respect to the flow rate (p < 0.05): For example, the average diameters of the droplets increased from 0.73 mm at 3 L/min to 1.29 mm at 6 L/min. The droplets’ densities decreased from 85.53 drops/cm2 to 30.00 drops/cm2 across the same flow range. The average uniformity index improved from 30.53 to 15.95 as the flow rate increased. These results indicate that the application of WSP is an effective and scalable approach for analyzing spray performance in aeroponics, as WSP can be rapidly digitized with simple tools, such as a cell phone camera, avoiding the limitations of flatbed scanners or specialized imaging systems. Full article
Show Figures

Figure 1

38 pages, 10466 KB  
Review
Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review
by Mingquan Jiang, Yang Li and Hongyang Zhang
Coatings 2025, 15(10), 1180; https://doi.org/10.3390/coatings15101180 - 9 Oct 2025
Viewed by 939
Abstract
Due to their low elasticity modulus, significant fatigue strength, and good formability, titanium and titanium alloys have shown a continuous growth trend in various fields of application. However, the passivation film on the surface of titanium and titanium alloys may dissolve, leading to [...] Read more.
Due to their low elasticity modulus, significant fatigue strength, and good formability, titanium and titanium alloys have shown a continuous growth trend in various fields of application. However, the passivation film on the surface of titanium and titanium alloys may dissolve, leading to corrosion under certain environmental conditions. Surface modification of these materials has become an indispensable and critical step in meeting the requirements of various operating conditions of material performance. Compared to other surface treatment techniques, plasma surface treatment has advantages such as high efficiency, wide applicability, environmental friendliness, flexibility and controllability, and low-temperature treatment. This article focuses on the topic of plasma surface modification technology for titanium and titanium alloys and highlights the key limitations of Plasma chemical heat treatment, Physical Vapor Deposition (PVD), plasma-enhanced chemical vapor deposition (PECVD), Plasma immersion ion implantation (PIII), and plasma spraying (PS). The current research status of surface modification methods in improving the surface properties of titanium and titanium alloys and the prospects of surface modification technology for titanium alloys are also discussed. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Graphical abstract

27 pages, 3055 KB  
Review
Research Progress on Polyether Ether Ketone (PEEK) Composite Coatings: A Review
by Xin Wang, Rongyu Sun, Bingjie Xiao, Bo Zhang, Tingting Shi, Wenqi Zhao, Li Cui and Peter K. Liaw
Coatings 2025, 15(10), 1128; https://doi.org/10.3390/coatings15101128 - 29 Sep 2025
Viewed by 917
Abstract
As modern industrialization accelerates, traditional metallic materials face challenges in meeting critical surface protection requirements. Constrained by their physicochemical properties, these materials exhibit significant performance degradation. This leads to frequent peeling of surface coatings on critical components. Polyetheretherketone (PEEK) is a high-performance semi-crystalline [...] Read more.
As modern industrialization accelerates, traditional metallic materials face challenges in meeting critical surface protection requirements. Constrained by their physicochemical properties, these materials exhibit significant performance degradation. This leads to frequent peeling of surface coatings on critical components. Polyetheretherketone (PEEK) is a high-performance semi-crystalline thermoplastic used in advanced engineering applications. Its composite coating systems have emerged as a promising alternative to metallic coatings. This paper systematically reviews the recent advances in coating preparation techniques for PEEK composites. The current status of the use of mainstream preparation methods such as thermal spray technology, rapid prototyping and electrophoretic deposition is highlighted. The strengths and weaknesses of each method are also compared. Critical parameters including substrate roughness, temperature, and substrate elasticity are systematically examined. The effects of these variables are evaluated with respect to critical performance indicators, including porosity levels and interfacial bonding strength of PEEK composite coatings. A comparative investigation was carried out on different reinforcement materials. Their interfacial interactions with the matrix are examined in detail at the microscopic level. The impact of these modification strategies on coating performance was comprehensively evaluated. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

13 pages, 1993 KB  
Article
Microencapsulation of Carotenoid-Enriched Plant-Based Oils by Spray-Drying Using Alternative Vegan Wall Materials: A Strategy to Improve Stability and Antioxidant Activity
by Marta Díez, Gonzalo Berzal, Paz García-García and Francisco J. Señoráns
Phycology 2025, 5(4), 51; https://doi.org/10.3390/phycology5040051 - 27 Sep 2025
Viewed by 508
Abstract
Sustainable plant-based materials are becoming more popular as a substitute for those of animal origin for the encapsulation of compounds. Among different techniques, microencapsulation is widely used to protect bioactives and keep them intact to reach the desired target area. In this work, [...] Read more.
Sustainable plant-based materials are becoming more popular as a substitute for those of animal origin for the encapsulation of compounds. Among different techniques, microencapsulation is widely used to protect bioactives and keep them intact to reach the desired target area. In this work, microencapsulation of oils by spray-drying using alternative vegan materials was proposed to mitigate oxidative degradation of oils. The determination of the best combination and ratio for different vegan wall materials (pectin, inulin, pea protein, and modified corn starch) was first developed using high-oleic sunflower oil enriched with β-carotene. In terms of efficiency, the best wall materials were pectin and inulin (P:I) in a 1:1 ratio, achieving 67.26 ± 0.78%. This ratio also obtained the best morphological results for shape and size studied by SEM (scanning electron microscopy) and DLS (dynamic light scattering). Additionally, the antioxidant activity of the oil enriched with β-carotene was studied, obtaining an IC5O of 0.15 mg/mL. Moreover, when Schizochytrium sp. was used instead of sunflower oil, as a docosahexaenoic acid (DHA)-enriched plant-based oil, the best results were also obtained for the P:I mixture, but at a ratio of 1:5. In all cases, the preservation of fatty acid profiles was achieved, giving insights for the potential use of alternative materials. The synergy between the use of antioxidants and encapsulation provides an effective method to avoid oxidation of edible oils. This work demonstrates the possibility of encapsulating carotenoid-enriched microalgae oil with vegan materials, improving its stability and bioavailability. Full article
Show Figures

Figure 1

18 pages, 2606 KB  
Article
Evaluation of the Efficiency of Encapsulation and Bioaccessibility of Polyphenol Microcapsules from Cocoa Pod Husks Using Different Techniques and Encapsulating Agents
by Astrid Natalia González Morales, Luis Javier López-Giraldo, Erika Sogamoso González and Yaiza Moscote Chinchilla
Processes 2025, 13(10), 3094; https://doi.org/10.3390/pr13103094 - 27 Sep 2025
Viewed by 614
Abstract
Cocoa pod husk (CPH) has the potential to be utilized for polyphenol extraction to be used in functional food formulations and pharmaceutical formulations due to its health benefits. However, polyphenols are sensitive to environmental factors that reduce their stability and functionality. Therefore, encapsulation [...] Read more.
Cocoa pod husk (CPH) has the potential to be utilized for polyphenol extraction to be used in functional food formulations and pharmaceutical formulations due to its health benefits. However, polyphenols are sensitive to environmental factors that reduce their stability and functionality. Therefore, encapsulation is necessary to protect their antioxidant capacity, mask undesirable flavours and smells, and, at the same time, allow the release of polyphenols in the gastrointestinal phases. This study encapsulated polyphenols using complex coacervation (CC) and spray drying (SD) with gum arabic (GA), sodium alginate (SA), chitosan (C), and gelatine (G), and evaluated yield (EY), encapsulation efficiency (EE), loading efficiency (LE), and bioaccessibility through in vitro digestion. The results showed that in the encapsulation using CC, the highest LE of 36.95 ± 7.63% was obtained using SA-G. In SD, significant differences in LE were observed among the tested encapsulant ratios, with the highest LE of 34.77 ± 1.2% achieved using GA (1:3). Bioaccessibility varied significantly depending on the encapsulation technique and encapsulating agent (EA) used. Using GA and spray drying (SD), the highest polyphenol release was achieved at 76.55 ± 5.10%, in contrast to only 6.41 ± 1.61% for the non-encapsulated extract. In conclusion, both techniques for encapsulating polyphenols extracted from CPH are efficient. However, SD allows for greater polyphenol bioaccessibility. Full article
(This article belongs to the Special Issue Microencapsulation of Food Antioxidants)
Show Figures

Figure 1

18 pages, 1667 KB  
Article
Theoretical Validations and Analysis of Fine Aerosol Droplet Interactions with Submicron Contaminant Particles in Indoor Air Purification
by Olga Kudryashova, Andrey Shalunov, Vladimir Khmelev and Natalya Titova
Environments 2025, 12(10), 349; https://doi.org/10.3390/environments12100349 - 26 Sep 2025
Viewed by 626
Abstract
Environmental problems associated with emergency emissions, indoor air pollution with harmful particles, and the spread of viruses and bacteria make the topic of cleaning indoor air from small particles of pollution relevant. In the event of a dangerous situation associated with the presence [...] Read more.
Environmental problems associated with emergency emissions, indoor air pollution with harmful particles, and the spread of viruses and bacteria make the topic of cleaning indoor air from small particles of pollution relevant. In the event of a dangerous situation associated with the presence of small particles in the air, especially those smaller than 10 μm, methods for quickly cleaning the air from such pollutants are required. One of these new methods is the efficient spraying of fine aerosol using the ultrasound technique. Fine aerosol with a droplet size of about 30–50 μm interacts more effectively with pollutant particles compared to larger aerosols. In this paper, the process of interaction of droplets with a characteristic size of 30–50 μm with airborne pollutant particles sized 0.1–10 μm is theoretically studied. Particular attention is paid to particles sized 0.1–2 μm, which are the most difficult to remove from the air. The work will serve as a theoretical basis for the development of methods for cleaning indoor air of pollutant particles using fine aerosol. Full article
Show Figures

Figure 1

33 pages, 6726 KB  
Review
Recent Techniques to Improve Amorphous Dispersion Performance with Quality Design, Physicochemical Monitoring, Molecular Simulation, and Machine Learning
by Hari Prasad Bhatta, Hyo-Kyung Han, Ravi Maharjan and Seong Hoon Jeong
Pharmaceutics 2025, 17(10), 1249; https://doi.org/10.3390/pharmaceutics17101249 - 24 Sep 2025
Viewed by 893
Abstract
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer [...] Read more.
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer miscibility, molecular mobility, and thermodynamic properties. The main manufacturing techniques including hot-melt extrusion, spray drying, and KinetiSol® dispersing are discussed for their impact on formulation homogeneity and scalability. Recent advances in excipient selection, molecular modeling, and in silico predictive approaches have transformed ASD design, reducing dependence on traditional trial-and-error methods. Furthermore, machine learning and artificial intelligence (AI)-based computational platforms are reshaping formulation strategies by enabling accurate predictions of drug–polymer interactions and physical stability. Advanced characterization methods such as solid-state NMR, IR, and dielectric spectroscopy provide valuable insights into phase separation and recrystallization. Despite these technological innovations, ensuring long-term stability and maintaining supersaturation remain significant challenges for ASDs. Integrated formulation design frameworks, including PBPK modeling and accelerated stability testing, offer potential solutions to address these issues. Future research should emphasize interdisciplinary collaboration, leveraging computational advancements together with experimental validation to refine formulation strategies and accelerate clinical translation. The scientists can unlock the full therapeutic potential with emerging technologies and a data-driven approach. Full article
Show Figures

Graphical abstract

Back to TopTop