Microstructural Refinement and Improvement of Microhardness of a Hypoeutectic Al–Fe Alloy Treated by Laser Surface Remelting †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- An operational parameters map, which includes laser beam scanning speed, average power and working distance was proposed permitting treatments that induce defects and those producing pools with higher widths and depths to be assessed.
- LSR operational parameters were shown to directly affect the dimensions of treated pools, however, a direct correlation with the microstructural spacing could not be noticed.
- As compared to the untreated substrate, the microstructural spacing of the remelted tracks was shown to be around 14 times more refined and the microhardness has increased about 43%.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, B.; Xu, R.; Li, H.; Xiao, H.; Zhang, W.; Li, S. Development of high Fe content squeeze cast 2A16 wrought Al alloys with enhanced mechanical properties at room temperature and elevated temperatures. Mater. Charact. 2018, 142, 389–397. [Google Scholar] [CrossRef]
- Cubero-Sesin, J.M.; Horita, Z. Mechanical properties and microstructures of Al-Fe alloys processed by high-pressure torsion. Metall. Mater. Trans. A 2012, 43, 5182–5192. [Google Scholar] [CrossRef]
- Taylor, J.A. Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J.; Nana, L.; Damoah, W.; Robertson, D.G. Removal of iron from aluminum: A review. Miner. Process. Extr. Metall. Rev. 2012, 33, 99–157. [Google Scholar] [CrossRef]
- Hou, J.P.; Li, R.; Wang, Q.; Yu, H.Y.; Zhang, Z.J.; Chen, Q.Y.; Ma, H.; Li, X.W.; Zhang, Z.F. Origin of abnormal strength-electrical conductivity relation for an Al-Fe alloy wire. Materialia 2019, 7, 100403. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Makhlouf, M.M. Alternatives to the Al-Si eutectic system in aluminum casting alloys. Int. J. Metalcast. 2016, 10, 342–347. [Google Scholar] [CrossRef]
- Ye, J.; Guan, R.; Zhao, H.; Yin, A. Effect of Zr content on the precipitation and dynamic softening behavior in Al-Fe-Zr alloys. Mater. Charact. 2020, 162, 110181. [Google Scholar] [CrossRef]
- Fadayomi, O.; Clark, R.; Thole, V.; Sanders, P.G.; Odegard, G.M. Investigation of Al-Zn-Zr and Al-Zn-Ni alloys for high electrical conductivity and strength application. Mater. Sci. Eng. A 2019, 743, 785–797. [Google Scholar] [CrossRef]
- Wang, X.; Guan, R.G.; Wang, Y.; Misra, R.D.K.; Yang, B.W.; Li, Y.D.; Chen, T.J. Mechanistic understanding on the evolution of nanosized Al3Fe phase in Al-Fe alloy during heat treatment and its effect on mechanical properties. Mater. Sci. Eng. A 2019, 751, 23–34. [Google Scholar] [CrossRef]
- Wang, X.; Guan, R.G.; Misra, R.D.K.; Wang, Y.; Li, H.C.; Shang, Y.Q. The mechanistic contribution of nanosized Al3Fe phase on the mechanical properties of Al-Fe alloy. Mater. Sci. Eng. A 2018, 724, 452–460. [Google Scholar] [CrossRef]
- Lei, Q.; Ramakrishnan, B.P.; Wang, S.; Wang, Y.; Mazumder, J.; Misra, A. Structural refinement and nanomechanical response of laser remelted Al-Al2Cu lamellar eutectic. Mater. Sci. Eng. A 2017, 706, 115–125. [Google Scholar] [CrossRef]
- Kwok, C.T.; Man, H.C.; Cheng, F.T.; Lo, L.H. Developments in laser-based surface engineering processes: With particular reference to protection against cavitation erosion. Surf. Coat. Technol. 2016, 291, 189–204. [Google Scholar] [CrossRef]
- Goulart, P.R.; Spinelli, J.E.; Cheung, N.; Garcia, N. The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Mater. Chem. Phys. 2010, 119, 272–278. [Google Scholar] [CrossRef]
- Bertelli, F.; Meza, E.S.; Goulart, P.R.; Cheung, N.; Riva, R.; Garcia, A. Laser remelting of Al-1.5 wt%Fe alloy surfaces: Numerical and experimental analyses. Opt. Laser. Eng. 2011, 49, 490–497. [Google Scholar] [CrossRef]
- Gremaud, M.; Carrard, M.; Kurz, W. The microstructure of rapidly solidified Al–Fe alloys subjected to laser surface treatment. Acta Metall. Mater. 1990, 38, 2587–2599. [Google Scholar] [CrossRef]
- Cheung, N.; Pinto, M.A.; Ierardi, M.C.F.; Garcia, A. Numerical and experimental analysis of laser surface remelting of Al-15Cu alloy samples. Surf. Eng. 2005, 21, 473–479. [Google Scholar] [CrossRef]
- Silva, B.L.; Garcia, A.; Spinelli, J.E. The effects of microstructure and intermetallic phases of directionally solidified Al-Fe alloys on microhardness. Mater. Lett. 2012, 89, 291–295. [Google Scholar] [CrossRef]
- Krishna, B.V.; Bandyopadhyay, A. Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENS). Mater. Des. 2009, 30, 1490–1496. [Google Scholar] [CrossRef]
- Lien, H.-H.; Mazumder, J.; Wang, J.; Misra, A. Microstructure evolution and high density of nanotwinned ultrafine Si in hypereutectic Al-Si alloy by laser surface remelting. Mater. Charact. 2020, 161, 110147. [Google Scholar] [CrossRef]
- Trivedi, R.; Magnin, P.; Kurz, W. Theory of eutectic growth under rapid solidification conditions. Acta Metall. 1987, 35, 971–980. [Google Scholar] [CrossRef]
z [mm] | P [W] | v [mm/min] | Pool Nº | Quality | Depth [µm] | Width [µm] |
---|---|---|---|---|---|---|
6 | 600 | 500 | 1 | Blistering | - | - |
750 | 2 | Blistering | - | - | ||
1000 | 3 | Deformation | - | - | ||
800 | 500 | 4 | Blistering | - | - | |
750 | 5 | Blistering | - | - | ||
1000 | 6 | Deformation | - | - | ||
400 | 500 | 7 | Blistering | - | - | |
750 | 8 | Good | 114 | 400 | ||
1000 | 9 | Good | 105 | 386 | ||
8 | 600 | 500 | 10 | Good | 200 | 686 |
750 | 11 | Good | 182 | 671 | ||
1000 | 12 | Good | 170 | 549 | ||
800 | 500 | 13 | Good | 242 | 710 | |
750 | 14 | Good | 214 | 682 | ||
1000 | 15 | Good | 177 | 654 | ||
400 | 500 | 16 | Porosity | 145 | 523 | |
750 | 17 | Low Depth | - | - | ||
1000 | 18 | Low Depth | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Kakitani, R.; Cangerana, K.C.B.; Garcia, A.; Cheung, N. Microstructural Refinement and Improvement of Microhardness of a Hypoeutectic Al–Fe Alloy Treated by Laser Surface Remelting. Mater. Proc. 2020, 2, 16. https://doi.org/10.3390/CIWC2020-06813
Oliveira R, Kakitani R, Cangerana KCB, Garcia A, Cheung N. Microstructural Refinement and Improvement of Microhardness of a Hypoeutectic Al–Fe Alloy Treated by Laser Surface Remelting. Materials Proceedings. 2020; 2(1):16. https://doi.org/10.3390/CIWC2020-06813
Chicago/Turabian StyleOliveira, Ricardo, Rafael Kakitani, Karina C. B. Cangerana, Amauri Garcia, and Noé Cheung. 2020. "Microstructural Refinement and Improvement of Microhardness of a Hypoeutectic Al–Fe Alloy Treated by Laser Surface Remelting" Materials Proceedings 2, no. 1: 16. https://doi.org/10.3390/CIWC2020-06813
APA StyleOliveira, R., Kakitani, R., Cangerana, K. C. B., Garcia, A., & Cheung, N. (2020). Microstructural Refinement and Improvement of Microhardness of a Hypoeutectic Al–Fe Alloy Treated by Laser Surface Remelting. Materials Proceedings, 2(1), 16. https://doi.org/10.3390/CIWC2020-06813