Microstructure Characterization of Titania-Based Micro-Arc Oxidation Coatings with Nanoparticles †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. MAO Coating with Ag Nanoparticles
3.2. MAO Coating with ZnO Nanoparticles
4. Conclusions
- The incorporation of metallic and ceramic nanoparticles into the MAO coating is possible both from the as-supplied material and from silver acetate. Preferred locations are the very top of the coating and areas close to porosity.
- The use of silver acetate allows the production of nanoparticles with a diameter of less than 10 nm, which is not possible with the use of as-supplied nanopowder.
- The TEM method combined with EDS and performed on FIB-produced lamellae allows for unambiguous confirmation of the places of incorporation of nanoparticles into MAO coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydogan, D.; Muhaffel, F.; Kilic, M.K.; Acar, O.K.; Cempura, G.; Baydogan, M.; Karaguler, N.G.; Kose, G.T.; Czyrska-Filemonowicz, A.; Cimenoglu, H. Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater. Technol. 2017, 33, 119–126. [Google Scholar] [CrossRef]
- Aydogan, D.; Muhaffel, F.; Acar, O.K.; Topcuoglu, E.N.; Kulekci, H.G.; Kose, G.T.; Baydogan, M.; Cimenoglu, H. Surface modification of Ti6Al4V by micro-arc oxidation in AgC2H3O2-containing electrolyte. Surf. Innov. 2018, 6, 277–285. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Chen, C.; Zhao, Z. A Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater. Des. 2015, 85, 640–652. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation—An Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- van Hengel, I.; Tierolf, M.W.A.M.; Fratila-Apachitei, L.E.; Apachitei, J.; Zadpoor, A.A. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 380. [Google Scholar] [CrossRef] [PubMed]
- Fattah-alhosseini, A.; Molaei, M.; Attarzadeh, N.; Babaei, K.; Attarzadeh, F. On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review. Ceram. Int. 2021, 46, 20587–20607. [Google Scholar] [CrossRef]
- Maj, Ł.; Fogarassy, Z.; Wojtas, D.; Jarzębska, A.; Muhaffel, F.; Sulyok, A.; Góral, A.; Kulczyk, M.; Çimenoğlu, H.; Bieda, M. In-situ formation of Ag nanoparticles in the MAO coating during the processing of cp-Ti. Sci. Rep. 2023, 13, 3230. [Google Scholar] [CrossRef] [PubMed]
- Maj, Ł.; Wojtas, D.; Jarzębska, A.; Bieda, M.; Trembecka-Wójciga, K.; Chulist, R.; Kozioł, W.; Góral, A.; Trelka, A.; Janus, K.; et al. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method. J. Mater. Sci. Technol. 2022, 111, 224–235. [Google Scholar] [CrossRef]
Notation of Sample | Base Aqueous Electrolyte | Additive |
---|---|---|
MAO + ZnO | 14.4 g/L Na2HPO4 | 2 g/L of ZnO nanoparticles (avg size: 20–30 nm) |
MAO + Ag | 14.4 g/L Na2HPO4 | 0.002 M of AgC2H3O2 (silver acetate) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maj, L.; Muhaffel, F.; Jarzebska, A.; Trelka, A.; Kulczyk, M.; Cimenoglu, H.; Bieda, M. Microstructure Characterization of Titania-Based Micro-Arc Oxidation Coatings with Nanoparticles. Mater. Proc. 2023, 14, 14. https://doi.org/10.3390/IOCN2023-14535
Maj L, Muhaffel F, Jarzebska A, Trelka A, Kulczyk M, Cimenoglu H, Bieda M. Microstructure Characterization of Titania-Based Micro-Arc Oxidation Coatings with Nanoparticles. Materials Proceedings. 2023; 14(1):14. https://doi.org/10.3390/IOCN2023-14535
Chicago/Turabian StyleMaj, Lukasz, Faiz Muhaffel, Anna Jarzebska, Anna Trelka, Mariusz Kulczyk, Huseyin Cimenoglu, and Magdalena Bieda. 2023. "Microstructure Characterization of Titania-Based Micro-Arc Oxidation Coatings with Nanoparticles" Materials Proceedings 14, no. 1: 14. https://doi.org/10.3390/IOCN2023-14535
APA StyleMaj, L., Muhaffel, F., Jarzebska, A., Trelka, A., Kulczyk, M., Cimenoglu, H., & Bieda, M. (2023). Microstructure Characterization of Titania-Based Micro-Arc Oxidation Coatings with Nanoparticles. Materials Proceedings, 14(1), 14. https://doi.org/10.3390/IOCN2023-14535