Radical Scavenging Activity of Silymarin Encapsulated in Liposomal Vesicles: Impact of UV Irradiation and Lyophilization †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Wang, J.; Jin, Z.; Qiu, C. A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Res. Int. 2022, 156, 111314. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, U.; Akhtar, J.; Singh, S.P.; Ahmad, F.J.; Siddiqui, S. Silymarin nanoemulsion against human hepatocellular carcinoma: Development and optimization. Artif. Cells Nanomed. Biotechnol. 2018, 46, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Jassey, A.; Hsu, H.Y.; Lin, L.T. Antiviral activities of silymarin and derivatives. Molecules 2019, 24, 1552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, X. Evaluation of immunomodulatory activity of silymarin extract from Silybum marianum in mice of health food. Adv. J. Food Sci. Technol. 2015, 8, 278–282. [Google Scholar] [CrossRef]
- Jovanović, A.; Balanč, B.; Djordjević, V.; Ota, A.; Skrt, M.; Šavikin, K.; Bugarski, B.; Nedović, V.; Poklar-Ulrih, N. Effect of gentisic acid on the structural-functional properties of liposomes incorporating β-sitosterol. Colloids Surf. B Biointerfaces 2019, 183, 110422. [Google Scholar] [CrossRef] [PubMed]
- Isailović, B.; Kostić, I.; Zvonar, A.; Đorđević, V.; Gašperlin, M.; Nedović, V.; Bugarski, B. Resveratrol loaded liposomes produced by different techniques. Innov. Food Sci. Emerg. Technol. 2013, 19, 181–189. [Google Scholar] [CrossRef]
- Mozafari, M.; Johanson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Liu, C.; Wang, N.; Zhou, H.; Shafiq, F.; Yu, S.; Qiao, W. O-nitrobenzyl liposomes with dual-responsive release capabilities for drug delivery. J. Mol. Liq. 2021, 334, 116016. [Google Scholar] [CrossRef]
- Ghanbarzadeh, S.; Valizadeh, H.; Zakeri-Milani, P. The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Adv. Pharm. Bull. 2013, 3, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC methodology: Main milestones and recent applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Köksal, E.; Gülçin, I.; Beyza, S.; Sarikaya, O.; Bursal, E. In vitro antioxidant activity of silymarin. J. Enzym. Inhib. Med. Chem. 2009, 24, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.P.; Saleh, M.A. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants 2013, 2, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Karkad, A.A.; Pirković, A.; Milošević, M.; Stojadinović, B.; Šavikin, K.; Marinković, A.; Jovanović, A.A. Silibinin-loaded liposomes: The influence of modifications on physicochemical characteristics, stability, and bioactivity associated with dermal application. Pharmaceutics 2024, 16, 1476. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Chuesiang, P.; Shin, G.H.; Park, H.J. Post-processing techniques for the improvement of liposome stability. Pharmaceutics 2021, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Mukherjee, S.; Smith, M.; Das, S.K. Therapeutic uses of antioxidant liposomes. Methods Mol. Biol. 2002, 199, 145–161. [Google Scholar] [CrossRef] [PubMed]
Sample | Anti-DPPH Potential (%) | Anti-ABTS Potential (µmol TE */mL) |
---|---|---|
Non-treated liposomes | 81.63 ± 1.20 b* | 1.68 ± 0.52 b |
UV-irradiated liposomes | 81.15 ± 1.33 b | 1.52 ± 0.36 b |
Lyophilized liposomes | 79.85 ± 1.24 b | 2.02 ± 0.21 b |
Silymarin | 84.03 ± 0.70 a | 3.04 ± 0.31 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karkad, A.; Milošević, M.; Pirković, A.; Marinković, A.; Jovanović, A. Radical Scavenging Activity of Silymarin Encapsulated in Liposomal Vesicles: Impact of UV Irradiation and Lyophilization. Eng. Proc. 2025, 99, 14. https://doi.org/10.3390/engproc2025099014
Karkad A, Milošević M, Pirković A, Marinković A, Jovanović A. Radical Scavenging Activity of Silymarin Encapsulated in Liposomal Vesicles: Impact of UV Irradiation and Lyophilization. Engineering Proceedings. 2025; 99(1):14. https://doi.org/10.3390/engproc2025099014
Chicago/Turabian StyleKarkad, Amjed, Milena Milošević, Andrea Pirković, Aleksandar Marinković, and Aleksandra Jovanović. 2025. "Radical Scavenging Activity of Silymarin Encapsulated in Liposomal Vesicles: Impact of UV Irradiation and Lyophilization" Engineering Proceedings 99, no. 1: 14. https://doi.org/10.3390/engproc2025099014
APA StyleKarkad, A., Milošević, M., Pirković, A., Marinković, A., & Jovanović, A. (2025). Radical Scavenging Activity of Silymarin Encapsulated in Liposomal Vesicles: Impact of UV Irradiation and Lyophilization. Engineering Proceedings, 99(1), 14. https://doi.org/10.3390/engproc2025099014