Mineralogical Mapping of Pyroxene and Anorthosite in Dryden Crater Using M3 Hyperspectral Data †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Yellow Pixels—Show absorption features at shorter wavelengths (~900 nm and ~1800 nm), indicative of low-Ca, Mg-OPX [6,10,11,12]. These are found on steep slopes of the central peak, crater walls, and surrounding hummocky terrain, suggesting excavation of deep crustal materials [13] or an impact melt origin in noritic lithologies [7].
- Blue Pixels—Display a lack of absorption at 1000 nm and 2000 nm, but exhibit an absorption feature at 1250 nm, indicating the presence of pure anorthosite (PAN) [2,14,15]. However, given their location in shadowed regions and the potential for masking by mineral mixing and shock metamorphism [16], these are interpreted as potential false positives for PAN.
- Green-Cyan Pixels—Exhibit a lack of strong absorption at 1000 nm and absorption features at 1250 nm and 2000 nm, suggesting plagioclase feldspar mixtures potentially containing small amounts (<~5 vol%) of spinel within a feldspathic matrix [14,17,18,19]. These are extensively distributed within the crater and throughout the surrounding ejecta.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPA | South Pole–Aitken basin |
M3 | Moon Mineralogy Mapper |
PDS | Planetary Data System |
NASA | National Aeronautics and Space Administration |
LOLA | Lunar Orbiter Laser Altimeter |
DEM | Digital elevation model |
ENVI | Environment for Visualizing Imagery |
FCC | False color composite |
CPX | Clinopyroxenes |
OPX | Orthopyroxenes |
Px | Pyroxene ratio |
An | Anorthosite ratio |
Sp | Spinel parameter |
RGB | Red green blue |
PAN | Pure anorthosite |
LMO | Lunar Magma Ocean |
USGS | United States Geological Survey |
References
- Suárez-Valencia, J.E.; Rossi, A.P.; Zambon, F.; Carli, C.; Nodjoumi, G. MoonIndex, an open-source tool to generate spectral indexes for the moon from M3 data. Earth Space Sci. 2024, 11, e2023EA003464. [Google Scholar] [CrossRef]
- Donaldson, H.K.; Cheek, L.; Pieters, C.; Mustard, J.; Greenhagen, B.; Thomas, I.; Bowles, N. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. J. Geophys. Res. Planets 2014, 119, 1516–1545. [Google Scholar] [CrossRef]
- Pieters, C.M.; Hanna, K.D.; Cheek, L.; Dhingra, D.; Prissel, T.; Jackson, C. The distribution of Mg-spinel across the Moon and constraints on crustal origin. Am. Mineral. 2014, 99, 1893–1910. [Google Scholar] [CrossRef]
- Moriarty, D.P., III; Simon, S.B.; Shearer, C.K.; Haggerty, S.E.; Petro, N.; Li, S. Orbital characterization of the composition and distribution of spinels across the Crisium region: Insight from Luna 20 samples. J. Geophys. Res. Planets 2023, 128, e2022JE007482. [Google Scholar] [CrossRef]
- Pieters, C.M.; Gaddis, L.; Jolliff, B.; Duke, M. Rock types of South Pole-Aitken Basin and extent of basaltic volcanism. J. Geophys. Res. 2001, 106, 28001–28022. [Google Scholar] [CrossRef]
- Moriarty, D.P., III; Pieters, C.M. The Character of South Pole-Aitken Basin: Patterns of Surface and Subsurface Composition. J. Geophys. Res. Planets 2018, 123, 729–747. [Google Scholar] [CrossRef]
- Borst, A.; Foing, B.; Davies, G.; Westrenen, W. Surface Mineralogy and Stratigraphy of the Lunar South Pole-Aitken Basin Determined from Clementine UV/VIS and NIR Data. Planets Space Sci. 2013, 68, 76–85. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Hargitai, H.; Nass, A. Planetary Mapping: A Historical Overview. In Planetary Cartography and GIS; Hargitai, H., Ed.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Klima, R.L.; Pieters, C.M.; Dyar, M.D. Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteorit. Planet. Sci. 2007, 42, 235–253. [Google Scholar] [CrossRef]
- Klima, R.L.; Dyar, M.D.; Pieters, C.M. Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteorit. Planet. Sci. 2011, 46, 379–395. [Google Scholar] [CrossRef]
- Moriarty, D.P.; Pieters, C.M. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data. Meteorit. Planet. Sci. 2016, 51, 207–234. [Google Scholar] [CrossRef]
- Ivanov, M.; Hiesinger, H.; van der Bogert, C.; Orgel, C.; Pasckert, J.; Head, J. Geologic History of the Northern Portion of the South Pole-Aitken Basin on the Moon. J. Geophys. Res. Planets 2018, 123, 2585–2612. [Google Scholar] [CrossRef]
- Cheek, L.C.; Pieters, C.M. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. Am. Mineral. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- Crown, D.A.; Pieters, C.M. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra. Icarus 1987, 72, 492–506. [Google Scholar] [CrossRef]
- Fritz, J.; Assis Fernandes, V.; Greshake, A.; Holzwarth, A.; Böttger, U. On the formation of diaplectic glass: Shock and thermal experiments with plagioclase of different chemical compositions. Meteorit. Planet. Sci. 2019, 54, 1533–1547. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Sunshine, J.; Morris, R. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteorit. Planet. Sci. 2004, 39, 545–565. [Google Scholar] [CrossRef]
- Jackson, C.R.; Cheek, L.C.; Williams, K.B.; Hanna, K.D.; Pieters, C.M.; Parman, S.W. Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions. Am. Mineral. 2014, 99, 1821–1833. [Google Scholar] [CrossRef]
- Williams, K.B.; Jackson, C.R.; Cheek, L.C.; Donaldson-Hanna, K.L.; Parman, S.W.; Pieters, C.M. Reflectance spectroscopy of chromium-bearing spinel with application to recent orbital data from the Moon. Am. Mineral. 2016, 101, 726–734. [Google Scholar] [CrossRef]
- Warren, P.H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 1985, 13, 201–240. [Google Scholar] [CrossRef]
- Pieters, C.M.; Taylor, L.A.; Noble, S.K.; Keller, L.P.; Hapke, B.; Morris, R.V. Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 2000, 35, 1101–1107. [Google Scholar] [CrossRef]
ENVI Formula | General Formula | Spectral Index Name |
---|---|---|
(b7 + b32)/b19 | (R700 nm + R1200 nm)/R950 nm | Pyroxene Ratio (Px) |
(b22 + b47)/b34 | (R1000 nm + R1500 nm)/R1250 nm | Anorthosite Ratio (An) |
(((b34 − b9)/(500)) × 1350 + b34)/b76 | (((R1250 − R750)/500) × 1350 + R1250)/R2600 | Spinel Parameter (Sp) |
RGB False Color Composite | General Formula |
---|---|
PxSpAn | Red = Pyroxene ratio Green = Spinel parameter Blue = Anorthosite ratio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, I.; Filchev, L. Mineralogical Mapping of Pyroxene and Anorthosite in Dryden Crater Using M3 Hyperspectral Data. Eng. Proc. 2025, 94, 3. https://doi.org/10.3390/engproc2025094003
Ivanov I, Filchev L. Mineralogical Mapping of Pyroxene and Anorthosite in Dryden Crater Using M3 Hyperspectral Data. Engineering Proceedings. 2025; 94(1):3. https://doi.org/10.3390/engproc2025094003
Chicago/Turabian StyleIvanov, Iskren, and Lachezar Filchev. 2025. "Mineralogical Mapping of Pyroxene and Anorthosite in Dryden Crater Using M3 Hyperspectral Data" Engineering Proceedings 94, no. 1: 3. https://doi.org/10.3390/engproc2025094003
APA StyleIvanov, I., & Filchev, L. (2025). Mineralogical Mapping of Pyroxene and Anorthosite in Dryden Crater Using M3 Hyperspectral Data. Engineering Proceedings, 94(1), 3. https://doi.org/10.3390/engproc2025094003