Analysis of Compressed Air Energy Storage System and Evaluation of Financial Feasibility—A Case Study †
Abstract
:1. Introduction
2. Numerical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desai, N. The Economic Impact of CAES on Wind in TX, OK, and NM; Texas State Energy Conservation Office: Austin, TX, USA, 2005. [Google Scholar]
- Liu, C.; Xu, Y.J.; Hu, S.; Chen, H.S. Techno-economic analysis of compressed air energy storage power plant. Energy Storage Sci. Technol. 2015, 4, 158–168. [Google Scholar]
- Minutillo, M.; Lavadera, A.L.; Jannelli, E. Assessment of design and operating parameters for a small compressed air energy storage system integrated with a stand-alone renewable power plant. J. Energy Storage 2015, 4, 135–144. [Google Scholar] [CrossRef]
- Ghalelou, A.N.; Fakhri, A.P.; Nojavan, S.; Majidi, M.; Hatami, H. A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism. Energy Convers. Manag. 2016, 120, 388–396. [Google Scholar] [CrossRef]
- Baxter, R. 2020 Energy Storage Pricing Survey; Sandia National Laboratories: Albuquerque, NM, USA, 2021. [Google Scholar]
- Liu, W.; Liu, L.; Zhou, L.; Huang, J.; Zhang, Y.; Xu, G.; Yang, Y. Analysis and optimization of a compressed air energy storage-combined cycle system. Entropy 2014, 16, 3103–3120. [Google Scholar] [CrossRef]
- Hauer, A. Advances in Energy Storage; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Jiang, R.; Yin, H.; Peng, K.; Xu, Y. Multi-objective optimization, design and performance analysis of an advanced trigenerative micro compressed air energy storage system. Energy Convers. Manag. 2019, 186, 323–333. [Google Scholar] [CrossRef]
- Madlener, R.; Latz, J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl. Energy 2013, 101, 299–309. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, R.; Deng, Q.; Gu, X.; Liu, H.; He, Y.; Mu, K.; Liu, X.; Tian, H.; Li, H. Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES). Energy Convers. Manag. 2019, 199, 111953. [Google Scholar] [CrossRef]
- Wang, J.; Lu, K.; Ma, L.; Wang, J.; Dooner, M.; Miao, S.; Li, J.; Wang, D. Overview of compressed air energy storage and technology development. Energies 2017, 10, 991. [Google Scholar] [CrossRef]
- Lashgari, F.; Babaei, S.M.; Pedram, M.Z.; Arabkoohsar, A. Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES). Energy Convers. Manag. 2022, 255, 115333. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Compressor operation time | 8 h |
Inlet air flux of compressor | 108 kg/s |
Stages of compressor | 4 |
Number of intercoolers | 3 |
Outlet air temperature of coolers | 50 °C |
Isentropic efficiency of centrifugal compressor | 0.8 |
Compressor mechanical efficiency | 0.99 |
Turbine operation time | 2 h |
Inlet air flux of combustion chamber | 417 kg/s |
Inlet air temperature of combustion chamber #1 | 50 °C |
Inlet air pressure of combustion chamber #1 | 42 bar |
Outlet temperature of combustion chamber #1 | 600 °C |
Outlet temperature of combustion chamber #2 | 1050 °C |
Outlet air pressure of combustion chamber #2 | 11 bar |
Outlet pressure of LP gas turbine | 1.13 bar |
Isentropic efficiency of turbine | 0.85 |
Turbine mechanical efficiency | 0.99 |
LHV of natural gas | 50,030 kJ/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-H.; Lin, Y.-T.; Liu, P.-H.; Cho, C.-C. Analysis of Compressed Air Energy Storage System and Evaluation of Financial Feasibility—A Case Study. Eng. Proc. 2025, 92, 77. https://doi.org/10.3390/engproc2025092077
Chen M-H, Lin Y-T, Liu P-H, Cho C-C. Analysis of Compressed Air Energy Storage System and Evaluation of Financial Feasibility—A Case Study. Engineering Proceedings. 2025; 92(1):77. https://doi.org/10.3390/engproc2025092077
Chicago/Turabian StyleChen, Ming-Hong, Yan-Ting Lin, Pin-Hsuan Liu, and Ching-Chang Cho. 2025. "Analysis of Compressed Air Energy Storage System and Evaluation of Financial Feasibility—A Case Study" Engineering Proceedings 92, no. 1: 77. https://doi.org/10.3390/engproc2025092077
APA StyleChen, M.-H., Lin, Y.-T., Liu, P.-H., & Cho, C.-C. (2025). Analysis of Compressed Air Energy Storage System and Evaluation of Financial Feasibility—A Case Study. Engineering Proceedings, 92(1), 77. https://doi.org/10.3390/engproc2025092077