Semantic Segmentation Using Lightweight DeepLabv3+ for Desiccation Crack Detection in Soil †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. DeepLabv3+ Architecture
2.3. Model Training and Validation
2.4. Evaluation Standards
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kodikara, J.; Costa, S. Desiccation Cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. In Multiphysical Testing of Soils and Shales; Laloui, L., Ferrari, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–32. [Google Scholar] [CrossRef]
- Tang, C.S.; Zhu, C.; Cheng, Q.; Zeng, H.; Xu, J.J.; Tian, B.G.; Shi, B. Desiccation cracking of soils: A review of investigation approaches, underlying mechanism, and influencing factors. Earth Sci. Rev. 2021, 216, 103586. [Google Scholar] [CrossRef]
- Jones, L.D.; Jefferson, I. Expansive soils. In ICE Manual of Geotechnical Engineering; ICE Publishing: London, UK, 2012; Volume 1, pp. 413–441. [Google Scholar]
- Albrecht, B.A.; Benson, C.H. Effect of desiccation on compacted natural clays. J. Geotech. Geoenviron. 2001, 127, 67–75. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Xu, D.; Zeng, H.; Shi, B. Water infiltration in a cracked soil considering effect of drying-wetting cycles. J. Hydrol. 2021, 593, 125640. [Google Scholar] [CrossRef]
- Li, H.D.; Tang, C.S.; Cheng, Q.; Li, S.J.; Gong, X.P.; Shi, B. Tensile strength of clayey soil and the strain analysis based on image processing techniques. Eng. Geol. 2019, 253, 137–148. [Google Scholar] [CrossRef]
- Morris, H.; Graham, J.; Williams, D.J. Cracking in drying soils. Can. Geotech. J. 1992, 253, 263–277. [Google Scholar] [CrossRef]
- Wang, L.L.; Tang, C.S.; Shi, B.; Cui, Y.J.; Zhang, G.Q.; Hilary, I. Nucleation and propagation mechanisms of soil desiccation cracks. Eng. Geol. 2018, 238, 27–35. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Zeng, H.; Zhu, C.; An, N.; Shi, B. Effects of microstructure on desiccation cracking of a compacted soil. Eng. Geol. 2020, 265, 105418. [Google Scholar] [CrossRef]
- Miller, C.J.; Mi, H.; Yesiller, N. Experimental analysis of desiccation crack propagation in clay liners. J. Am. Water Resour. Assoc. 1998, 34, 677–686. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Tang, A.M.; Shi, B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Eng. Geol. 2010, 114, 261–266. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Lin, L.; Xu, J.J. Desiccation cracking behavior of soils. Jpn. Geotech. Soc. Spec. Publ. 2019, 7, 90–95. [Google Scholar] [CrossRef]
- Dasog, G.S.; Shashidhara, G.B. Dimension and volume of cracks in a vertisol under different crop covers. Soil. Sci. 1993, 156, 424–428. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Liu, C.; Zhao, L.Z.; Wang, B.J. Influencing factors of geometrical structure shrinkage cracks in clayey soils. Eng. Geol. 2008, 101, 204–217. [Google Scholar] [CrossRef]
- Liu, C.; Tang, C.S.; Shi, B.; Suo, W.B. Automatic quantification of crack patterns by image processing. Comput. Geosci. 2013, 57, 77–80. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Weng, L.; Wang, L.; Li, Z.; Xu, L. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles. Eng. Geol. 2016, 208, 93–99. [Google Scholar] [CrossRef]
- Singh, S.P.; Rout, S.; Tiwari, A. Quantification of desiccation cracks using image analysis technique. Int. J. Geotech. Eng. 2018, 12, 383–388. [Google Scholar] [CrossRef]
- Ling, H.Y.; Lau, S.H.; Chong, S.Y.; Lee, M.L.; Tanaka, Y. Quantifying desiccation cracks for expansive soil using machine learning technique in image processing. Int. J. Integr. Eng. 2024, 16, 8–15. [Google Scholar] [CrossRef]
- Han, X.L.; Jiang, N.J.; Yang, Y.F.; Choi, J.; Singh, D.N.; Beta, P.; Du, Y.J.; Wang, Y.J. Deep learning based approach for the instance segmentation of clayey soil desiccation cracks. Comput. Geotech. 2022, 146, 104733. [Google Scholar] [CrossRef]
- Xu, J.J.; Zhang, H.; Tang, C.S.; Cheng, Q.; Tian, B.G.; Liu, B.; Shi, B. Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence. Eng. Geol. 2022, 296, 106495. [Google Scholar] [CrossRef]
- Pham, M.V.; Ha, Y.S.; Kim, Y.T. Automatic detection and measurement of ground crack propagation using deep learning networks and an image processing technique. Measurement 2023, 215, 112832. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Fu, H.; Meng, D.; Li, W.; Wang, Y. Bridge crack semantic segmentation based on improved Deeplabv3+. J. Mar. Sci. Eng. 2021, 9, 671. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Do, T.L.; Nguyen, T.N.; Nguyen, N.N. Semantic segmentation of cracks using DeepLabv3+. In Proceedings of the Third International Conference on Sustainable Civil Engineering and Architecture, Da Nang City, Vietnam, 19–21 July 2023; Reddy, J.N., Wang, C.M., Luong, V.H., Le, A.T., Eds.; Springer: Singapore, 2024; pp. 1539–1546. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
Input | Operator | Output |
---|---|---|
h × w × k | 1 × 1 conv2d, BN, ReLU6 | h × w × (tk) |
h × w × tk | 3 × 3 Depthwise s = s, BN, ReLU6 | h/s × w/s × (tk) |
h/s × w/s × tk | 1 × 1 conv2d, BN | h/s × w/s × k’ |
Input | Operator | t | c | n | s |
---|---|---|---|---|---|
4802 × 3 | Conv2d | - | 32 | 1 | 2 |
2402 × 32 | Bottleneck | 1 | 16 | 1 | 1 |
2402 × 16 | Bottleneck | 6 | 24 | 2 | 2 |
1202 × 24 | Bottleneck | 6 | 32 | 3 | 2 |
602 × 32 | Bottleneck | 6 | 64 | 4 | 2 |
302 × 64 | Bottleneck | 6 | 96 | 3 | 1 |
302 × 96 | Bottleneck | 6 | 160 | 3 | 1 |
302 × 160 | Bottleneck | 6 | 320 | 1 | 1 |
Metrics | Traditional Method | DeepLabv3+ |
---|---|---|
Precision (%) | 34.66 | 95.76 |
Recall (%) | 95.27 | 84.12 |
F1 score (%) | 50.82 | 89.56 |
IoU (%) | 34.07 | 81.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, H.Y.; Lau, S.H.; Chong, S.Y.; Lee, M.L.; Tanaka, Y. Semantic Segmentation Using Lightweight DeepLabv3+ for Desiccation Crack Detection in Soil. Eng. Proc. 2025, 91, 2. https://doi.org/10.3390/engproc2025091002
Ling HY, Lau SH, Chong SY, Lee ML, Tanaka Y. Semantic Segmentation Using Lightweight DeepLabv3+ for Desiccation Crack Detection in Soil. Engineering Proceedings. 2025; 91(1):2. https://doi.org/10.3390/engproc2025091002
Chicago/Turabian StyleLing, Hui Yean, See Hung Lau, Siaw Yah Chong, Min Lee Lee, and Yasuo Tanaka. 2025. "Semantic Segmentation Using Lightweight DeepLabv3+ for Desiccation Crack Detection in Soil" Engineering Proceedings 91, no. 1: 2. https://doi.org/10.3390/engproc2025091002
APA StyleLing, H. Y., Lau, S. H., Chong, S. Y., Lee, M. L., & Tanaka, Y. (2025). Semantic Segmentation Using Lightweight DeepLabv3+ for Desiccation Crack Detection in Soil. Engineering Proceedings, 91(1), 2. https://doi.org/10.3390/engproc2025091002