Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA) †
Abstract
1. Introduction
- (I)
- A novel QCA-based parity generator and checker circuit leveraging an optimized MMV design.
- (II)
- Improved efficiency in terms of area, delay, and energy dissipation compared to conventional designs.
- (III)
- A comparative analysis demonstrating the advantages of the proposed approach over existing state-of-the-art QCA parity circuits.
2. Related Works
- Instead of conventional XOR cascades, the work employs a modified majority-voter (MMV)-based XOR gate, improving logic efficiency and reducing latency.
- The proposed design avoids multilayered crossovers, simplifies fabrication, and enhances layout feasibility and thermal stability for practical implementation.
- Compared to recent designs, the circuit achieves better energy efficiency, as validated using a specific tool.
- The design also achieves area efficiency, making it suitable for high-density computing applications.
- The optimized structure ensures a minimal delay overhead, improving the real-time reliability of QCA-based parity circuits. The methodology can be extended to design higher-bit parity generators and checkers while maintaining efficiency advantages.
3. Methods
4. Results and Discussions
5. Comparisons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safoev, N.; Jeon, J.-C. Design and evaluation of cell interaction based vedic multiplier using quantum-dot cellular automata. Electronics 2020, 9, 1036. [Google Scholar] [CrossRef]
- Walus, K.; Schulhof, G.; Jullien, G.A.; Dimitrov, V.S. High level exploration of quantum-dot cellular automata. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; pp. 30–33. [Google Scholar] [CrossRef]
- Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology 1993, 4, 49–57. [Google Scholar] [CrossRef]
- Ahmed, T.; Younes, A.; Elkabani, I. Multi-strategy based quantum cost reduction of quantum boolean circuits. Phys. Scr. 2024, 100, 015102. [Google Scholar] [CrossRef]
- Vankamamidi, V.; Ottavi, M.; Lombardi, F. A serial memory by quantum-dot cellular automata (QCA). IEEE Trans. Comput. 2008, 57, 606–618. [Google Scholar] [CrossRef]
- Pramanik, A.K.; Pal, J.; Sen, B. Analysis of fault tolerance capability of QCA circuit under regular clocking. Int. J. Electron. 2025, 1–23. [Google Scholar] [CrossRef]
- Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 1994, 75, 1818–1825. [Google Scholar] [CrossRef]
- Ottavi, M.; Pontarelli, S.; DeBenedictis, E.; Salsano, A.; Kogge, P.; Lombardi, F. High throughput and low power dissipation in QCA pipelines using Bennett clocking. In Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, Anaheim, CA, USA, 17–18 June 2010; pp. 17–22. [Google Scholar] [CrossRef]
- Navi, K.; Farazkish, R.; Sayedsalehi, S.; Azghadi, M.R. A new quantum-dot cellular automata full-adder. Microelectron. J. 2010, 41, 820–826. [Google Scholar] [CrossRef]
- Bahar, A.N.; Ahmad, F.; Wani, S.; Al-Nisa, S.; Bhat, G.M. New modified-majority voter-based efficient QCA digital logic design. Int. J. Electron. 2018, 106, 333–348. [Google Scholar] [CrossRef]
- Naz, S.F.; Shah, A.P.; Ahmed, S. QCA-based fault-tolerant XOR gate for reliable computing with high thermal stability. Phys. Scr. 2024, 99, 065120. [Google Scholar] [CrossRef]
- Khan, A.; Bahar, A.N.; Arya, R. Quad-functioning parity layout for nanocomputing: A QCA design. Nano Commun. Netw. 2024, 41, 100525. [Google Scholar] [CrossRef]
- Sharma, V.K. Parity generators in QCA nanotechnology for nanocommunication systems. Nano Commun. Netw. 2023, 36, 100440. [Google Scholar] [CrossRef]
- Tapna, S.; Chakrabarti, K.; Mukhopadhyay, D. A secure communication gateway with parity generator implementation in QCA platform. In Computational Intelligence in Communications and Business Analytics; Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S., Eds.; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1579, pp. 197–209. [Google Scholar] [CrossRef]
- Raman, S.; Samanvita, N.; Ahmed, T.; Aishwarya, A.; Karthiganesh, D. Implementation of parity generator and checker using quantum-dot cellular automata. In Proceedings of the IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Mysuru, India, 16–17 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Fazili, M.M.; Jahangir, R.; Tripathi, N. Novel parity generator and detector design using quantum dots. In Proceedings of the 6th International Conference for Convergence in Technology (I2CT), Maharastra, India, 2–4 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Khakpour, M.; Gholami, M.; Naghizadeh, S. Parity generator and digital code converter in QCA nanotechnology. Int. Nano Lett. 2020, 10, 49–59. [Google Scholar] [CrossRef]
- Walus, K.; Dysart, T.J.; Jullien, G.J.; Budiman, R. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 2004, 3, 26–31. [Google Scholar] [CrossRef]
- Shaw, R.K.; Khan, A. Implementation of adders using XOR gates in quantum-dot cellular automata with physical verification. Phys. Scr. 2024, 99, 125108. [Google Scholar] [CrossRef]
- Torres, F.L.; Wille, R.; Niemann, P.; Drechsler, R. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3031–3041. [Google Scholar] [CrossRef]
A (Input) | B (Input) | C (Input) | PG_out (Output) |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
P (Input) | Q (Input) | R (Input) | PG_in (Input) | PC (Output) |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
Works | Year | Cell Count | Total Area in μm2 | Delay in Clock Cycle | #(QM + QI) | #QC | TEin meV | Costs | ||
---|---|---|---|---|---|---|---|---|---|---|
AD Cost | ED Cost | QCA Cost | ||||||||
[11] * | 2024 | 414 | 0.56 | 4.00 | 12 + 12 | NA | NA | 8.96 | NA | 2496.0 |
[12] | 2024 | 118 | 0.17 | 1.25 | 9 + 2 | 3 | 207.60 | 0.26 | 0.0673 | 143.7 |
[13] * | 2023 | 18 | 0.01 | 0.50 | 1 + 1 | NA | NA | 0.002 | NA | 0.5 |
[14] | 2022 | 98 | 0.09 | 1.50 | 8 + 5 | NA | 26.53 | 0.20 | 0.0016 | 155.2 |
[15] | 2022 | 62 | 0.08 | 2.00 | 10 + 1 | NA | 20.87 | 0.32 | 0.0017 | 404.0 |
[16] | 2021 | 55 | 0.09 | 1.50 | 12 + 2 | NA | NA | 0.20 | NA | 328.5 |
[17] | 2020 | 86 | 0.10 | 1.50 | 9 + 8 | 1 | 43.40 | 0.22 | 0.0042 | 202.5 |
Proposed | NA | 37 | 0.05 | 1.00 | 3 + 0 | NA | 34.40 | 0.05 | 0.0011 | 9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, R.K.; Khan, A. Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA). Eng. Proc. 2025, 87, 94. https://doi.org/10.3390/engproc2025087094
Shaw RK, Khan A. Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA). Engineering Proceedings. 2025; 87(1):94. https://doi.org/10.3390/engproc2025087094
Chicago/Turabian StyleShaw, Rohit Kumar, and Angshuman Khan. 2025. "Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA)" Engineering Proceedings 87, no. 1: 94. https://doi.org/10.3390/engproc2025087094
APA StyleShaw, R. K., & Khan, A. (2025). Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA). Engineering Proceedings, 87(1), 94. https://doi.org/10.3390/engproc2025087094